
AD-A260 606A wlmnDTIC
S ELECTE

S FEB 2 4= 1993i

Measures of User-System TR 92B0000047V3

Interface Effectiveness: An January 1993

Encoding Scheme and Indicators
for Assessing the Usability of
Graphical, Direct-Manipulation
Style User Interfaces

Donna L. Cuomo
Charles D. Bowen

93-03874

U04ord Maahuseusm

£ Form Approved

REPORT DOCUMENTATION PAGE oMB No. 0704-0188

PuOic feocrting burden 'or tis collection o0 inormation s estimaten to averaqe I .our per resporse. inciuding the time 0or revse ing instr.ctioný seacnlrq nfs•n ata Se(ourea.
gathering and maintaining the data needed, and completing and reviewvnd the collection of information 'Send comments reqaroing this burden estimate or anl other asvec of ti's
collection of intformation. including suggestion$ toy reducing this ouroen. to Washington Heacdduartern Services. Directorate ?or ntormation Ooerat:ons and Reports. 1215 Jefteron

Davis Highway. Suite 1204. Arlington. VA 22202-4302 and to the Office .-f Management and Budget. PaperworK Reduction Proiect (0704-0188). Vvashington. LrC 20503

1. AGENCY USE ONLY (Leave blank) 1 2. REPORT DATE 3. REPR YEAD AE OEEIJanuary 199 I7 P YEADDAE OEE

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Measures of User-System Interface Effectiveness: An
Encoding Scheme and Indicators for Assessing the Usabilit
of Graphical, Direct-Manipulation Style User Interfaces

6. AUTHOR(S)

Donna L. Cuomo
Charles D. Bowen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

The MITRE Corporation
202 Burlington Road
Bedford, MA 01730-1420 MTR 92B0000047V3

9. SPONSORING 'MONITORING AGENCY NAME(S' AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

same as above same as above

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION 'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

ABSTRACT

See attached.

14. SUBJECT TERMS 15. NUMBER OF PAGES
92

User-system Interface, Human-computer Interaction 1i. PRICE CODE

"I. SECURITY CLASSIFICATION 1i, SECURITY CLASSIFICATION I1. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT I

Unclassified Unclassified Unclassified I Unlimited
S" 754(-0-28C-550C, Sta~oa'3 -o" .2 1L.

Measures of User-System MTh 92BOO00047V3

Interface Effectiveness: An January 1993

Encoding Scheme and Indicators
for Assessing the Usability of
Graphical, Direct-Manipulation
Style User Interfaces

Donna L. Cuomo
Charles D. Bowen

DTIC QUALMTY INSPECTED -3

Contra, Spowor MSR
Coenbc No. N/A
Praie No. 9162A -ACces-o- For
Dept D047

NTIS CRA&I
Approved for public re•me ; Dric TAB 0dbtflbulon unbmited. U nalInouVced 0-

By ..

M Availability Codes

Fldrd Mm w usllut'=s Dist Avd1l and Ior
Special

M5-\ _

Department Approval: //L C % C'
Nancy C. uGoodwiv

MITRE Project Appro val___ __
Donna L. Cuomo

ABSTRACT

The purpose of this MWIRE Sponsored Research project was to develop methods and
measures for evaluating user-system interface effectiveness for command and control systems
with graphical, direct manipulation style interfaces. Due to the increased use of user interface
prototyping during concept definition and demonstration/vtlidation phases, the opportunity
exists for human factors engineers to apply evaluation methodologies early enough in the life
cycle to make an impact on system design. Understanding and improving user-system
interface (USI) evaluation techniques is critical to this process. In 1986, Norman proposed a
descriptive "stages of user activity" model of human-computer interaction (HCI). Hutchins,
Hollan, and Norman (1986) proposed concepts of measures based on the model which would
assess the directness of the engagements between the user and the interface at each stage of the
model. We created operational definitions of the concepts of directness, and derived
observable indicators that certain types of indirectness may exist in the interface design. This
phase of our research program involved using these concepts as a basis for a methodology of
analyzing data collected during usability studies. A usability study was performed on the
Military Airspace Management System (MAMS) prototype; four participants' and one user
interface expert's data were used for further analysis.

We first proved that in order to assess concepts such as the directness of user-system
interface engagements we need to know both what the user intended to do and what they did.
This involves integrating data collected via different media (computer collected keystrokes,
transcribed user protocols, video of the display output). A model-based, two-level encoding
scheme was then created and applied to the usability data to aid in extracting and quantifying
measures of USI effectiveness. The first level provides a high-level description of user
activity, depicting users' task intentions, intentions to execute, errors by stages, and the
success of their endeavors. The second level provides detailed information on the users' input
activities at a user-interface object level. The two levels combined provide a complete
description of what the users want to do, how they did it, and how directly the system allows
them to do it. We then manually extracted our derived indicators of indirectness from each
user's data and were able to perform a much more complete and quantifiable analysis of the
user-system interface than would have been possible with more traditional evaluation methods.
Examples of usability problems identified with this method are provided and we discuss the
need for a computer tool to make application of the method more efficient.

111

EXECUTIVE SUMMARY

INTRODUCTION

The focus of the project Measures of User-System Interface Effectiveness is to study and
validate methodologies and measures for analyzing the overall effectiveness of user-system
interfaces (USI) for task performance. There is an increased emphasis on user-centered system
design which involves designing a system from a user's perspective, where the concepts,
objects, and actions embodied in a system closely match the user's task concepts, objects, and
actions allowing users to interact with the computer task domain in a direct way. This report,
the third in a series of MSR reports, documents the evaluation methodology we developed for
analyzing data collected in usability studies, and provides examples of the method applied to a
prototyped system.

MEASURING GRAPHICAL, DIRECT MANIPULATION STYLE
INTERFACES

The class of interfaces we were interested in evaluating were graphical, direct-manipulation
style interfaces supporting ill-defined tasks. Ill-defined tasks refer to tasks which users
perform which have more than one correct solution, and alternative methods for performing
these tasks exist. This class of applications would include scheduling tasks, mission planning
tasks, and computer-aided architectural design tasks. These tasks can be contrasted to well-
defined tasks such as some data entry tasks where there is one correct solution, e.g., a
document is entered into the system and edited until error free. The attributes of the interface,
direct manipulation and graphical, as well as the ill-defined nature of the tasks makes traditional
USI evaluation measures less useful in terms of the feedback they provide. Traditional USI
evaluation measures tend to be summary measures such as time to complete a task, percent of
task completed, time spent in errors, percent or number of errors, command frequency, etc.
(Whiteside et al., 1988). These are gross measures and while various aspects of the interface
will undoubtedly affect these measures, this type of measure alone does not provide us with
enough granularity and diagnostic information on each user interaction with the system.
Additionally, the concepts of direct manipulation raise a virtually unexplored area in terms of
defining and measuring directness to a degree that they can be applied in practice. In summary,
a method for assessing user interfaces for this class of interfaces needs to be defined.

v

CONCEPTS OF SEMANTIC AND ARTICULATORY DISTANCE

Norman (1986), and Hutchins, Hollan and Norman (1986) provide a good treatment of
concepts of directness in user-system engagements. In their conceptual model of human-
computer interaction they describe seven stages a user could traverse while accomplishing a
goal with a computer: intention formation, action specification, execution, perception,
interpretation, and evaluation. They then define four concepts of distance which are critical to
maidng a design user-centered: semantic and articulatory distance of execution, and semantic
and articulatory distance of evaluation. Semantic distance of execution spans the intention
formation stage and involves uwhether the user can say what he/she wants to say directly with
the computer system or whether a complex expression is required. Articulatory distance of
execution spans the action specification stage and reflects the closeness of the form of the
action to be executed to the meaning of the input expression. This is followed by the stages of
execution and perception -- the stages spanning the translation from mental state to physical
activity and back again. Articulatory distance of evaluation spans the interpretation stage and
concerns how easily the output expression can be extracted from the output expression form.
Semantic distance of evaluation concerns the ease with which users can determine whether they
accomplished their goal.

These concepts are complex and intriguing but still rather high-level. Characterizing a
system by how well it supported the different stages, however, would provide us with the right
level of information needed to successfully iterate a design. We derived indicators or behaviors
of indirectness for each stage, based on Hutchins et al. concepts of directness; one set of
indicators is shown below. Supporting identification of the indicators involves collecting and
evaluating user-system performance at an interaction-by-interaction level and the sequencing of
engagements would be important. We derived a model-based methodology which allows us to
do this.

Causes of semantic indirectness of execution and evaluation and the
corresponding observable indicators

Semantic indirectness of
execution if: Indicator

User intention not supported • Protocol stating desired function
• Attempting to execute unsupported function, forced to abort

Missing high-level object • Same step or set of actions repeated on lower-level objects

Complex expression required • Many steps/actions required to complete intention
to accomplish intention • Errors in step order

- Incomplete/aborts in intentions

vi

Semantic indirectness of
evaluation if: Indicator

Extra step/s required to • Number and purpose of steps performed (e.g., to get
perform an evaluation information, or "check" something)

Difficult or user unable to • Frequency and types of evaluation errors
perform an evaluation * Evaluation not made

THE METHODOLOGY

The methodology consisted of four major steps. The first step was to conduct a usability
study; this involves real users exercising a system or prototype while evaluators collect data on
the process. We have determined that both verbal protocol data (where users are asked to voice
their thoughts aloud), as well as time-stamped computer collected history logs (records all the
users input actions) are required to be able to assess the four directness of engagement
concepts. Protocols provide information about what a user intends to do while the history log
provides information about how the user did it. The latter is easier to collect and analyze but is
ambiguous and insufficient if used alone.

A usability study was conducted using a prototyped airspace management scheduling
system. Data was collected on seven participants, with the method being applied to five of the
participant's data. One of the participants was the USI design engineer for the project and
served as our "user-interface expert" participant.

The second step involved integrating the collected data by combining the transcribed user
protocols with the appropriate portions of the user's history file; this was done manually.

The third step involved developing and applying a two-level encoding scheme, based on
Norman's model, to the data. The first level of the encoding scheme provides a high-level
description of user activity, depicting users' task intentions, intentions to execute, errors by
stages, and the success of each endeavor. The second level provides detailed information on
the users' input activities at a user-interface object level. The two levels combined provide a
complete description of what the users want to do, how they did it, and how well they did it.
The codes and their descriptions are shown in the tables below.

vii

Semantic-Level Encodings

Encoding Definition
Goal Scenario step.

Task intention (Int.task) An intention to complete one task
contributing to the completion of a goal.

Perception intention An intention to improve the perceptibility of
(Int.per) a display.

Intention to execute One computer step (may be comprised of
(Int.exe) multiple actions) leading to the completion

of a task intention. Several steps may be
required per task intention.

Evaluate (Eval) The success with which the intention was
accomplished.

Error in intention (Err.int) The intention was incorrect and will not
accomplish the goal.

Error in action specification Wrong sequence of actions to accomplish
(Err.acsp) the intention to execute.

Error in execution Manual, motor error in executing.
(Err. exec)

Error in perception Break-down in human perceptual
(Err. per) processing of information on a display.

Error in interpretation User fails to interpret system state correctly.
(Err. inter)

Error in evaluation User mistakenly thinks has or has not
(Err.eval) moved closer to the goal.

Recovered error (Rec.err) Error was detected and recovered from.

viii

Articulatory-Level Encodings

Encoding Definition
Menu A menu was opened
Command A command was selected
list-Select An item was selected from a list
Button A button was selected
Field An action was taken in a field
Scroll A scroll bar action was performed
Window A window action was performed
Application-specific objects Encodings to track the manipulation of

application-specific objects

The encoding of the data was done with the aid of a tool called SHAPA, developed at the
University of Illinois at Urbana-Champagne.

The fourth step in the evaluation methodology involved extracting the indicators of interest
from the encoded data files and comparing them across users. For ease of recording the
extracted information, we created a data summarization table. For each user task intention the
critical information is summarized in a manner which allows for easy comparison across
subjects.

An excerpt from a real participant's summary table for the task "schedule missions" is
shown in the figure below.

Int.task Freq Int.exec Freq # actions Eval of Eval of Errors Corn-
per int.exec int.exec int.task ments

2-24 resconf 1 Iookthawk/sdt-w 1 4 OK
thawk/sdt-w bokwpn-w I 1 OK

movesdt-w 1 6 OK OK
2-25 schsdt-w 1 schsdt-w 1 3 OK OK
2-26 schwpn-w 1 schwpn-w 1 2 OK OK
2-27 sch1240026-W 1 Iook1240026-w 1 2 OK

sch1240026-w 1 1 OK OK
2-30 schfox-w 1 Iookfox-w 1 2 OK

movefox-w 1 1 OK e14 - confli
schfox-w 1 1 OK OK state - R

err.inter

ix

Additionally, we collected the same data and completed the same form on the system user-
interface expert, to provide us with a baseline of expert system performance. The expert's data
illustrates the best the system can do. The real users' data illustrates the ease with which the
users could accomplish their tasks with this system and the directness of engagements.
Comparison of data across subjects allows for distinguishing between system-induced
problems (more than one user has same difficulty), effects of training (only least-experienced
subjects had the problem), and individual user problems (only one user had that type of
problem). Examples of the type of information we were able to extract for one goal, "schedule
missions", are summarized below.

Indicator Potential Problem
Repetitive sequences for applying the approve Can not select groups of objects for application of a
command to missions single command

Repetitive sequences for applying the approve System does not consider mission as an object for the
command to parts of a single mission case of applying scheduling commands

An abort while trying to bring up all parts of the System does not consider mission parts as an object for
"dact" mission on the display the case of finding the whole mission

An extra intention to execute required to "look" Information in dialog box is often required before
when the task intention is to schedule a mission mission can be approved. To increase feeling of

directness the two steps should be combined in some
manner.

Perceptual/execute errors When the missions were too close together, users would
select the wrong one. There was no way to differentiate
missions when the labels were very small.

Execute eror, many actions for recovery A user selects deny from menu rather than approve
which is adjacent. Lack of undo causes user to perform
multiple actions to fix.

Mission icons were often accidentally moved. Users
then had to manually reposition them. Two problems
are icons were too sensitive, and there is a lack of an
undo feature, resulting in multiple actions to undo a
previous action.

Finally, an error taxonomy based on the stages in the HCI model was created and applied to
the recorded instances of errors. This information is provided in Appendix D.

x

ACCOMPLISHMENTS

The results obtained to date on measures of user-system interface effectiveness are very
promising. We developed a method which allows us to obtain information on the directness of
user engagements with a system. The method involves integrating protocol data with history file
data, for a complete and useful picture of human-computer interaction (HCI) activity. We created
a theory-based encoding scheme which provides a method for quantitative analysis of the data.
We also created an error classification scheme based on the stages of user activity model, which
provides much more information on why an error occurred and how to fix the system to prevent
it than is possible to obtain from traditional error frequency measures. Indicators of user-system
interface (USI) effectiveness extending beyond errors and time were derived and found to be
useful. We have shown that a USI engagement can be error-free but not be direct, and new
measures and indicators such as those described here are required for a complete evaluation. The
measures are also in a form which allows for easy comparison across subjects. This technique
also allows us to determine whether difficulties are due to a single user's inexperience or whether
problems can be attributed to the system design.

FUTURE WORK

Measures and Indicators

We need to do several things in the area of refining the USI measures and indicators. First,
we need more rigorous definitions of the different levels of the encodings; when, for example, is
something a task intention as compared to an intention to execute? While we tried to be
consistent in our application of these terms, it was difficult, particularly as this was the first time
we applied the scheme. The same problem holds with regard to the level of detail for the
intentions to execute. Sometimes all actions within a dialog box were considered to be a single
intention to execute, and sometimes particular actions were broken out separately. This may
need to be flexible based on what areas of the USI are to be evaluated.

We would like to continue to work on the definitions and names for the different USI
indicators. There also seem to be many kinds of repetitions which are indicators of different
types and levels of problems. We would like to classify all of these various kinds of repetitions
and determine what they imply for the system design. Finally, we need to apply the encoding
scheme to a different system to ensure it is generic across systems, and continue to refine it.

The time required to apply our evaluation method could be greatly shortened by creating a
software system dedicated to supporting this method. The system will be multi-media and will
aid in integrating the history file and the users' intentions. We may be able to remove the step
of transcribing all of the users' proxjcols and just extract the information needed for the
intentions, evaluations, etc. We currently plan to build this tool in FY93.

xi

ACKNOWLEDGMENTS

The authors would like to acknowledge Scott E. Blomquist for providing the software
engineering support and expertise for this project. Scott created a robust version of the
Military Airspace Management System prototype which was the software used for
evaluation during our study. Scott also incorporated data collection routines into the
software, allowing time-stamped history logs of all user actions to be recorded. He later
created filtering software to extract the data of interest from that collected. We would also
like to acknowledge the hard work and efforts of Elizabeth Wadick, the co-op student who
supported this project. Elizabeth did many activities in support of this project but her
biggest contribution was in her data analysis efforts. Elizabeth manually transcribed all the
subjects' comments from the video tapes, she integrated the various data files, and she
painstakingly applied the encodings to the data and entered the information into our
software analysis package. Finally, we would like to thank the reviewers of this paper,
Nancy C. Goodwin and Gabriel Spitz, for their helpful comments which improved the
quality of the report.

xii

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

1.1 FY92 Research Program 1
1.2 Rationale for Cognitive-Based USI Effectiveness Measures 3
1.3 Stages of User Activity Model 4
1.4 Concepts of Distance and Directness 6

1.4.1 Semantic Distance/Directness 6
1.4.2 Articulatory Distance/Directness 7

1.5 Goals of this Research Effort 8
1.6 Summary 9

2 A Method for Measuring Directness of Engagements 11

2.1 Derivation of Operational Definitions and Indicators from the Model 11
2.2 Data Collection Techniques and Manipulations Needed to Support

the Indicators 14
2.3 Encoding Scheme 17

2.3.1 Semantic Level 18
2.3.2 Articulatory Level 23

2.4 Extracting USI Indicators from the Encoded Data 23
2.5 Process for Identifying and Recording Indicators 28
2.6 Summary 29

3 Application of the Evaluation Methodology to the Military Airspace
Management System 31

3.1 Military Airspace Management System (MAMS) Usability Study 31
3.1.1 Test Participants 31
3.1.2 Apparatus 31
3.1.3 Procedure 31

3.2 Data Selected for Further Analysis 33
3.3 Data Filtering and Integration 33
3.4 Applying the Encoding Scheme to the Integrated Data Files 35

3.4.1 Encoding with SHAPA 36
3.4.2 Evaluation of the Data Transformation Process 39

3.5 Traditional Performance Measure Results 39
3.6 Extracting the USI Indicators and Other Performance Measures 41

3.6.1 Measures Extractable from the Summary Data Tables 41
3.6.2 Summary Data Table Indicators for Goal 2, Scheduling Missions 43

xii*

SECTION PAGE

3.6.3 Summary Data Table Indicators for Goal 4, Creating Folder
Fightwing 47

3.6.4 Error Indicators 50
3.7 Summary of USI Indicators 54

4 Future Work and Conclusions 55

4.1 Measures and Indicators 55
4.2 Exploring Other Analysis Routines and their Effectiveness 56
4.3 A Tool for Aiding the Application of the Methodology 56
4.4 Assessing the Effectiveness of Perceptual Activities 57
4.5 Conclusions 58

5 List of References 59

Appendix A - Task Scenario 61

Appendix B - Semantic and Articulatory Level Encodings 63

Appendix C - Summary Data Tables 71

Appendix D - Error Summary 85

Distribution List 93

xiv

LIST OF FIGURES

FIGURE PAGE

1 Overall Research Plan 2

2 The Stages of User Activity 5

3 Semantic and Articulatory Distance of Execution and Evaluation 7

4 User-Based Evaluation 14

5 Conceptualization of the Encoding Hierarchy 24

6 MAMS Main Screen 32

7 Application of Semantic Level Encodings 37

8 Articulatory Level Encoding Example 38

9 Sample from the Summary Data Tables of Participant 1 for the Goal
"Set Tune and Date" 42

10 The User Interface Expert's Summary Data Table for the Goal "Schedule
Missions" 44

11 A Useres Summary Data Tables for Goal 2 "Schedule Missions" 45

12 Summary Data Table for User-Interface Expert on Creating Folder Fightwing 48

13 Summary Data Table for Participant 2 on Creating Folder Fightwing 49

14 Summary Data Table for Participant 3 on Creating Folder Fightwing 50

xv

LIST OF TABLES

TABLE PAGE

1 Examples of Three Classes of USI Effectiveness Measures 9

2 Causes of Semantic Indirectness of Execution and Evaluation and the
Corresponding Observable Indicators 12

3 Causes of Articulatory Indirectness of Execution and Evaluation and the
Corresponding Observable Indicators 13

4 Other Indicators Reflecting Manual or Peceptual Difficulties 13

5 Semantic-Level Encodings 22

6 Articulatory-Level Encodings 23
7 Data Transformation Tunes 39

8 Traditional Performance Measures for Each Participant 40
9 Frequency of Errors by Stage of User Activity 53

xvi

SECTION 1

INTRODUCTION

The focus of the project Measures of User-System Interface Effectiveness is to study
and validate methodologies and measures for analyzing the overall effectiveness of
graphical direct-manipulation user-system interfaces (USI) for task performance. There is
an increased emphasis on user-centered system design. This involves designing a system
from a user's perspective so that the concepts, objects, and actions embodied in a system
closely match the user's task concepts, objects, and actions, thus allowing users to interact
with the computer task domain in a more direct way. There has been little work done on
operationally defining concepts of directness or defining evaluation techniques for
assessing directness. This paper documents the results of using an existing human-
computer interaction framework to develop cognitive-based measures of the directness of
engagements, and the results of applying this new approach to an actual system. Section 1
provides background information on the project, the rationale for this work, and introduces
the theories and models on which the work was based. Section 2 discusses the new
scheme for assessing graphical user interfaces at a prescriptive and cognitive level. Section
3 provides the results of applying the new evaluation methodology to a prototyped system.
Section 4 concludes with a review of the advantages of the new method and discusses
additional areas of research required, particularly the need for a tool to support application
of the method.

1.1 FY92 RESEARCH PROGRAM

The plan for the FY92 MSR project is shown in figure 1. The first step was to review
models of human-computer interaction (HCI), review user-system interface (USI) evaluation
techniques and data analysis tools, and to derive concepts for potential USI measures based on
the models of human cognition and HCL Volume I of this MSR report series (MTR
92B0000047) documented the results of this first phase of the research. From the review of
USI models, measures, and evaluation techniques, we decided to focus further study on
structured judgement techniques and user-based evaluations as these appeared most suitable for
application to command and control (C2) systems. The issue to be resolved with the structured
judgement techniques was whether they assessed USI problem areas on the newer graphical,
direct-manipulation style interfaces. For user-based evaluations, the concern was whether
traditional measures captured USI effectiveness of the graphical, direct-manipulation-style
interfaces. The second and third phases of the research project addressed these issues.

In phase 2, structured judgement evaluation techniques were reviewed and applied to
predict where users might encounter interaction difficulties during task performance.
Structued judgement techniques involve an expert in USI design assessing a user interface;
users are not involved. These evaluation techniques were applied to the Military Airspace
Management System (MAMS), a prototype of a military airspace scheduling system. This
system served as our application system for the entire study and was selected because it has a

1

graphical, direct-manipulation style interface. The three structured judgement techniques used
were cognitive walkthrough, heuristic evaluation, and guidelines. It was found that the
cognitive walkthrough method applied almost exclusively to analyzing the user's computer-
input actions. The guidelines were more generally applicable across the various stages of
human-computer interaction but all the techniques were weak in measuring activities involving
display perception, interpretation, and evaluation, and how similar the concepts encoded by the
computer language are to the way users think about these concepts. The conclusion was that
improvements to existing or new techniques are required for evaluating the directness of
engagements for graphical, direct manipulation style interfaces. Phase 2 of this research was
documented in Volume II of this MSR report series (MTR 92B0000047V2).

Finally, the third phase of the research involved conducting a user-based evaluation and
developing new measures of USI effectiveness for analyzing data collected during such
evaluations. These results are documented in this report. Below we discuss why measures
and indicators of USI effectiveness are needed, and we introduce the concept of direct
manipulation style interfaces. This is followed by a review of Norman's and Hutchins, Hollan
and Norman's theories on stages of user activity and the concepts of semantic and articulatory
distance.

I Derive methods of extracting

SAssesst ability of three types of measures from usability data
strctured Judgement tscnniques -Collect performance data

to evaluate Interfaces • Develop encoding scheme
Vol 2 • Extract measures Vol 3

Changes to procedure,

models, & USI design
Vol 3

Figure 1. Overall Research Plan.

2

1.2 RATIONALE FOR COGNITIVE-BASED USI EFFECTIVENESS
MEASURES

Several changes in the area of computers and user-system interface design bring about the
need for cognitive-based measures of USI effectiveness. Computers are increasingly used to
support dynamic, interactive tasks in which the user's mind is an important component of the
total system (Landauer, 1987). No longer are users using a computer as a tool to perform
independent tasks, by giving instructions to the computer and waiting for a reply. Object-
oriented programming allows the task domain world to be graphically presented by the
computer for direct interaction with the user. As more and more applications adopt graphical
interfaces we need a cognitive-based method of evaluating such user interfaces to measure their
effectiveness.

A primary usability feature of a graphical user interface is the directness with which a user
can manipulate and control a software system. Schneiderman (1982, 1983, in Ziegler et al.,
1988) characterizes directness as:

"* Continuous representation of the object of interest

"* Physical actions or labeled button presses instead of complex syntax and command
names

"* Rapid incremental reversible operations whose impacts on the object of interest are
immediately visible.

These types of interfaces are hypothesized to be "easier to use" than dialogue-style
interfaces because the basic functionality can be quickly learned and actions are immediately
reversible. This does not, however, explain how directness of a user interface be designed and
evaluated.

The concept of direct manipulation (DM) is relatively complex (Hutchins, Hollan, and
Norman, 1986). Hutchins et al. note that despite the promise of this concept, there is no
account of how particular properties might produce the feeling of "directness." Intuitively,
directness can be described in terms of the type and number of mental steps required by the
user to achieve a desired goal. For example, if we want something to be displaced by two
inches, we move it two inches; our actions directly mimic our intentions.

The high-level issues relating to directness and evaluating directness are:

"* Does the computer represent the task domain in the same way the user
conceptualizes the task domain?

"* Are the objects in the system at the level of task object the user expects?

3

"* Is the USI directly supporting the user's cognitive processes during task performance?

"* Is the user forced to relearn how to do a task to suit the computer's model of the task
domain?

"* Does the USI use terminology and icons unfamiliar to the user?

"* Can poor/good interactive sequences between the human and the computer be identified?

Norman (1986) provides a generic model or framework which describes the mental steps
associated with the execution of a higher level goal. This framework and its related concepts,
presented below, provide a means of discussing and structuring the issues associated with
directness.

1.3 STAGES OF USER ACTIVITY MODEL

When examining human-computer task execution, Norman (1986) discusses the
discrepancy between a human's psychologically expressed goals and the physical controls and
variables of a computer system. Once a human has a goal (a state a person wishes to achieve),
the human must translate this goal into the desired system state, determine what settings will
achieve this state, and then determine what physical manipulations are required. Following the
execution of the required manipulation and system response, the human must then transform
the physical variables of the system state into expressions which are relevant to the
psychological variable of the goals. This is a feedback loop where the results of one activity
are used to direct further activities.

This theory underlies Norman's stages of user activity model. Norman took the approach
of dividing up user tasks into distinct segments. He uses the metaphor of bridging a gulf to
describe the issue of dealing with the psychological and physical variables in computer system
design and evaluation. The "Gulf of Execution" represents the gap between psychological
goals and the physical system. The four segments which bridge the "Gulf of Execution" are:
intention formation, specification of an action sequence, executing an action, and making
contact with the data entry mechanisms of the user interface (figure 2).

The "Gulf of Evaluation" represents the gap between the physical system and the original
psychological goals and intentions. The four segments which bridge the "Gulf of Evaluation"
are: user interface display output, perceptual processing of display output, interpretation of
display output, and evaluation or the comparison of the system state as represented by display
output to the original goals and expectations (figure 2). Note that "display output" could be
auditory or even tactile; it might not be limited to visual display.

4

INETO 'EXPECTATION* EAUTO"

A C T IO N .~

"MENTAL ACTIVITY

PHYSICAL ACTIVITY

Figure 2. The Stages of User Activity
From User Centered System Design: New Perspectives on Human-Computer Interaction
(p.42) by D. A. Norman and S. W. Draper, 1986, Hillsdale, New Jersey: Lawrence Erlbaum
Associates, Inc. Copyright 1986 by Lawrence Erlbaum Associates. Reprinted by permission.

Forming an intention is the activity that specifies the meaning of the input expression that is
to satisfy the user's goal. The action specification prescribes the form of an input expression
having the desired meaning. These two activities are psychological activities. The form of the
input expression is then executed by the user on the computer interface and the form of the
output expression appears on the display, to be perceived by the user. Interpretation
determines the meaning of the output expression from the form of the output expression.
Evaluation assesses the relationship between the meaning of the output expression and the
user's goals (Hutchins, Hollan, and Norman, 1986). The last two stages are also
psychological activities.

Norman concedes that real activity does not progress as a simple sequence of stages.
Stages of activity sometimes appear out of order and some stages are skipped while other
stages may be repeated. The stages on the evaluation side, for instance, can be occurring
almost continuously at some level during an interaction sequence.

5

1.4 CONCEPTS OF DISTANCE AND DIRECTNESS

Hutchins et al. (1986) further elaborated Norman's model and suggested that directness can
be derived from the degree of mental transformation required to span one's thoughts about the
task and the physical requirements of the system, and the qualitative feeling that one is directly
manipulating the objects of interest in the task domain. They termed these concepts semantic
and articulatory distances of execution and evaluation. Below we describe these concepts,
which are also illustrated in figure 3.

1.4.1 Semantic Distance/Directness

Semantic distance of execution involves matching the level of description required by the
interface language to the level at which the person thinks of the task. Distance involves how
well the computer language encodes concepts as the user thinks of them: can a concept be
expressed directly or is a complicated expression required? The resulting semantic distance can
be measured by how much of the required structure is provided by the system and how much
by the user, the more the user provides, the greater the distance (Hutchins et al., 1986). As
distance increases, directness lessens. Semantic distance is related to the "nouns" and "verbs"
or "objects" and "actions" provided by a computer system. Suppose, for example, a user of a
scheduling system wishes to schedule Crew A to fly a mission. If the system only provides
individual crew members as the objects the user can manipulate, the user would have to
identify the individual members of crew A and repeatedly perform the action which schedules
each crew member for a mission, resulting in a complicated expression to achieve a simple
concept. The user is being forced to work at a lower level than desired, resulting in greater
semantic distance. For execution, forming an intention is the activity that spans semantic
distance. TMe intention specifies the meaning of the input expression that is to satisfy the
user's goal or subgoal.

Semantic distance also occurs on the evaluation side of the interaction cycle. Here,
semantic distance is proportional to the amount of processing required by the user to determine
whether the goal has been achieved. If the terms of the computer output do not match those of
the user's intention or output is lacking, translation or inference by the user is needed,
increasing the semantic distance (Hutchins et al., 1986). Using the same example as above, if
the user was allowed to schedule "crew A", but the output of the action showed only individual
crew members who were scheduled, and not grouped or identified by crew name, the user
might be uncertain as to whether his/her intention was fulfilled. For evaluation, the stage of
evaluation spans semantic distance.

Instances where a system does not support a user intention or evaluation, even indirectly,
are also of interest.

6

Semantic Semantic
Gulf Distance meanng of output Distance Gulfof I ofipu xpe of

Execution Articulatory e Articulatory EvaluationjDistance * ' form of form~ Ditfc
Iniput output

Inter-- •--• ~Refelreontial-•

Figure 3. Semantic and Articulatory Distance of Execution and Evaluation

From User Centered System Design: New Perspectives on Human-Computer Interaction
(p.111) by D. A. Norman and S. W. Draper, 1986, Hillsdale, New Jersey: Lawrence Erlbaum
Associates, Inc. Copyright 1986 by Lawrence Erlbaum Associates. Reprinted by permission.

1.4.2 Articulatory Distance/Directness

Whereas semantic distance relates to relationships between users' intentions and meanings
of expressions, articulatory distance relates to relationships between the meanings of
expressions and their physical form (Hutchins et al., 1986).

On the execution side, the form may be keystrokes, mouse movements and clicks. On the
evaluation side, the form may be a string of characters, an icon or shape, or an auditory signal.
The idea is to reduce the number of arbitrary relationships between the physical forms and the
expressions' meanings (Hutchins et al., 1986). Using the example above, an articulatory
direct execution for scheduling a crew would be to "grab" the crew icon with the mouse and
place it on a graphically presented scheduling board. An articulatory direct evaluation would
occur if that same crew icon now appeared on the schedule at the correct time. Forming an
action specification is the activity that spans articulatory distance. For evaluation, interpretation
spans the articulatory distance.

7

The provided articulateness of a system is closely tied to the technology available. Simple
keyboards and small, low resolution screens limit the form and structure of the input and
output forms, respectively. A mouse, for example, is spatio-mimetic, meaning it can provide
articulatory direct input for tasks that can be represented spatially. Pictographs and icons are
examples of output forms which are related to their meanings (Hutchins et al., 1986).

Norman notes that with practice and experience, crossing the "gulfs" can become easier but
this does not mean that the distances have been reduced. Instead, the distances have been
bridged by the users - not the system. This implies a need to distinguish between a feeling of
directness which originates from close semantic coupling between intentions and the interface
language, and that which originates from practice. We believe that symptoms resulting from
semantic and articulatory distance could t-est be seen during the learning stages of HCI, before
the distance/gulf is bridged by experience.

1.5 GOALS OF THIS RESEARCH EFFORT

We have discussed high-level concepts that are important to the usability of graphical user
interfaces. In order to effectively evaluate such interfaces, we need to extract information
which indicates the presence of the various types of distances. Traditionally-used human
factors/usability measures alone are not sufficient to adequately address these issues or deal
with graphical user interfaces. Traditional measures consist of high-level summary measures
such as task completion time, number and percent of errors, command frequency, percent of
task complete, frequency of referencing documentation, etc. which are global and do not
provide enough granularity or insight into mental processes to identify specific USI problems
or their causes. They are of little value for redesign efforts.

HCI researchers have also developed a low-level class of measures which may be classified
as USI-specific, task independent measures. Examples of these are input device measures
such as mouse movement distance, screen-layout measures for assessing screen complexity
(Tulis, 1984), legibility measures such as reading rate, and measures for calculating optimal
depth vs. breadth for menu hierarchies. These measures focus on a very narrow aspect of the
user interface and are valuable for fine tuning but not overall diagnostics.

The goal of this project was to develop a new class of measures and a corresponding
methodology which assess the directness of the engagements supported by the USI. We call
this class "measures of the directness of engagements" (table 1). These measures would build
on the concepts of distances recently discussed. The measures would be cognitive as a result
of the mental nature of the tasks the interface supports, and theory-based which helps direct the
evaluation metrics and keeps them generic.

8

Table 1. Examples of Three Classes of USI Effectiveness Measures

Class Concepts/Measures
Traditional behavioral performance Correctness of decision
measures Optimization of resources

Task time
Number of errors

Measures of the directness of engagements Semantic distance of execution
Semantic distance of evaluation
Articulatory distance of execution
Articulatory distance of evaluation
Error analysis by stages

USI-specific, task independent measures Menu design
Mouse/keyboard measures
Display legibility
Screen complexity

1.6 SUMMARY

A rationale for the need for a new class of measures of user-system interface effectiveness
was presented. To effectively evaluate graphical, direct-manipulation style interfaces,
measures which are both cognitive and theory-based are required. The measures need to reflect
concepts important to the usability of these types of systems. This includes directness in the
areas of semantic and articulatory distance of execution and evaluation. In the next section, we
further develop these concepts by deriving operational definitions and indicators based on these
concepts, and describe a methodology and data collection techniques needed to support
generation of the developed indicators.

9

SECTION 2

A METHOD FOR MEASURING DIRECTNESS OF ENGAGEMENTS

In this section, a method for evaluating graphical, direct-manipulation style interfaces is
presented. A method is needed which describes directness in enough detail to provide
indications on how to enhance the design, but not too much detail to loose sight of the overall
application. We took the inverse approach, rather than attempting to measure every
engagement to assess its directness, we attempted to develop indicators which reflect
indirectness in any of the stages of user activity.

In this section, we discuss our derivation of indicators of semantic and articulatory
indirectness based on Norman's model and Hutchinson's et al. elaboration on the model. The
concept of a usability study and data collection techniques is discussed next, followed by the
development of a new encoding scheme, and analysis techniques for the extraction of USI
effectiveness indicators of indirectness. The following section will give an example of
applying the method to evaluate a system.

2.1 DERIVATION OF OPERATIONAL DFFINITIONS AND INDICATORS
FROM THE MODEL

The concepts on directness presented in section I are a useful starting point for assessing
the usability of graphical interfaces, but further definition of the concepts is required before
they can be used in practice. Our first decision was to concentrate on detecting when
indirectness or large distances exist in an interface. It is easier and more useful to detect
problems in directness than to quantify the directness of every Ha engagement. The concepts
we are trying to measure are somewhat subjective and still require interpretation but it is
possible to flag and identify potential problem areas.

We derived definitions and related indicators to address the different concepts of directness.
These are shown below in Tables 2-4. The indicators were developed based on our
experiences and some initial pilot testing. For semantic and articulatory indirectness of
execution and evaluation, we defined potential contributors to each type of user interface
indirectness (e.g., semantic indirectness exists if ...), and for each cause we provided an initial
list of observable indicators/resulting user behaviors which would occur if the problem was
present (tables 2 and 3). For instance, semantic indirectness would occur if the user interface
had a missing high-level object that the user expected to be there. Indicators that this problem
was present would be repetitious actions performed on lower-level objects. In addition to
semantic and articulatory problems, there can also be problems which occur during the stages
of execution and perception. For instance, if a display output is difficult to perceive, indicators
would be the user performing frequent actions to improve the perceptibility of the display or
making errors in perception (table 4).

11

Tables 2-4 refer to expressions, steps, and actions. We define expression as the total
command sequence required to fulfill an intention. A step is a logical computer grouping of
actions. Actions are the lowest level of input and their definition is variable depending on what
you want to learn. For example, a step may be the sequence of actions required to move a
word in a document, and the actions may include selecting the word, dragging the word, and
dropping the word in a new location.

Table 2. Causes of Semantic Indirectness of Execution and Evaluation and the
Corresponding Observable Indicators

Semantic indirectness of
execution i.f: Indicator

User intention not supported • User states the desire to perform the missing function
* Attempting to execute unsupported function, forced to abort

Missing high-level object - Same step or set of actions repeated on lower-level objects

Complex expression required * Many steps/actions required to complete intention
to accomplish intention • Errors in step order

* Incomplete/aborts in intentions

Semantic indirectness of
evaluation If.: Indicator

Extra step(s) required to - Number and purpose of steps performed (e.g., to get
perform an evaluation information, or "check" something)

Difficult or impossible to • Frequency and types of evaluation errors
perform an evaluation • Evaluation not made

12

Table 3. Causes of Articulatory Indirectness of Execution and Evaluation
and the Corresponding Observable Indicators

Articulatory indirectness
of execution if: Indicator

Complex steps • Number of actions needed to perform a single step
-Errors in performing the step

_ sequence of actions is incorrect
- omit action in step
- add extra action to step

* Aborted step

Poor match between single • False action match
action meaning and its form • Difficulty locatinvIidentifving action

Articulatory indirectness
of evaluation if: Indicator

Complex display output to - Steps or actions needed to perform a complete interpretation
interpret • Error and frequency of errors in interpretation

Poor match between display * Frequency and types of errors in interpretation
output form and its meanina

Table 4. Other Indicators Reflecting Manual or Perceptual Difficulties

Problem: Indicator
Poor perceptibility of • Frequency of steps/actions performed to improve
informtion on the display perception

• Frequency and types of perceptual errors

Poor manual interaction with - Frequency of steps/actions performed to make manual
the system interactions easier to accomplish

"* Frequency and type of manuai/execution errors

Ease of error recovery • Was error recovered from
"* Time between error and error recovery

13

2.2 DATA COLLECTION TECHNIQUES AND MANIPULATIONS NEEDED
TO SUPPORT THE INDICATORS

The technique best suited for extracting the above indicators during an evaluation is a
usability study. The indicators are extremely dependent on understanding how real users think
about tasks and the ease with which they can use the computer system. Usability studies are a
form of user-based evaluation which can be used to evaluate user interactions with a computer
system (see MTR's 92B0000047 vol. 1 and 2 for discussions of other techniques). Usability
studies (figure 4) involve collecting objective and/or subjective data on users interacting with a
system or prototype. Such studies are designed to evaluate the quality of particular products or
prototypes, and to improve and perfect product design, with the understanding of human
behavior a useful and important by-product of the evaluation procedures (Holleran, 1991).

History Files

I -manua* or
automatically colleced

Evaluate USI
Verbal Protocols Effectiveness

I Ouestionnaire
User Performs Task Data

Figure 4. User-Based Evaluation

When collecting data during a usability-style USI evaluation, the purpose is to get as
complete a description of the user's interaction with the system as possible. A complete
description of what was done and as much information on why it was done is desirable. There
are essentially four primary data collectio i means for human-computer interaction:

* video recordings of the display and users' gross activities,
* a history log of keystroke and mouse input data, which is often time-stamped,
* thoughts voiced aloud by the subjects, and
• questionnaires.

None of these methods alone, however, provides enough information to determine the degree
to which the user interface supports directness of engagements.

14

Video recordings of the display show us the results of the user inputs. The videotape
record of a user-system interaction is a valuable technique for identifying usability problems.
The advantage of videotape is that it provides a complete, continuous, and real time record of
the behavior of both the user and the system (Prasse, 1990). Videotape preserves the content,
sequence and timing of actions that occur in the user-system interaction. These records can
then be re-examined during the data analysis phase of usability testing.

History logs of keystroke and mouse input data provide us with a clear picture of what
users did and when they did it. Software can be augmented to capture all user actions
including keyboard entries, mouse movements, menu selections, button presses and icon
manipulations. A portion of a sample keystroke file is shown below.

Line Elapsed
Time Time User input

001 11:32:39 000 Pressed Button on View Button in Main Menu Bar
002 11:32:41 002 Released Button on Date Button in View Menu
003 11:32:43 002 Pressed Button on Cancel Button in Time Dialog
004 11:32:45 002 Pressed Button on View Button in Main Menu Bar
005 11:32:47 002 Released Button on Change Layout Button in View Menu
006 11:32:52 005 Pressed Button on Undisplayed SUA List in General Layout

Dialog
007 11:32:58 006 Pressed Button on Add Button in General Layout Dialog
008 11:32:59 001 Pressed Button on Undisplayed SUA List in General Layout

Dialog
009 11:33:01 002 Pressed Button on Add Button in General Layout Dialog
010 11:33:02 001 Pressed Button on OK Button in General Layout Dialog

The history files provide a record of what the user did. It alone is not sufficient to extract
all the measures of interest because you can not assess what the user was trying to do. From
the excerpt above, for instance, we can see what the user did. The user selected a menu
command which opened a dialog box and then closed the dialog box. Without knowing what
the user intended to do, we can not assess if this sequence of steps was the correct one to
accomplish her intention. If, for example, a user opens a dialog box and immediately cancels
out of it, the user could have opened it and realized it was the wrong dialog box, or the user
may have intentionally opened it to obtain some information from it. Without knowing the
intention, it can not be determined if a sequence was intentional or an error. In addition to the
ambiguity, with history logs alone, information on the users' stages of perception,
interpretation and evaluation is not available.

History logs or files are useful, however, in that they provide a detailed description of all
user inputs which would be difficult to get from the video tape alone. Also, there are some
indicators of USI problems that can be extracted from history files. For instance, repetitive
sequences of actions could be an indicator that the user is not able to apply an action to many
objects or a high-enough level object at once. So object-level information, or the need for

15

grouping functions, a semantic measure of execution, could be extractable. You can also
extract some indicators of execute problems such as information on typos, backspaces, and
frequency and duration of dragging of items. Some articulatory distance indicators are
available such as menu search activity (e.g., menu, menu, menu) which implies a search for a
cotmmnd, performing actions in the wrong sequence, omitting actions in a sequence and
similar types of error. Finally, timing between input event information is available. This type
of information is not useful when task or decision times are not critical system drivers. Also,
system timing may be misleading when the system being evaluated is a prototype.

The audio recordings of users asked to "think aloud" during task performance provide us
with some understanding of why users did what they did. This last technique brings us
closest to understanding the cognitive aspects of HCI including what the user's goals and
intentions were, and their assessment of the result of their actions.

We need to understand the user's intention as well as the steps used to obtain the intention
in order to assess the directness and determine the success of the following stages. The
information collected in the history file needs to be integrated with a description of the user's
intention and goals, as well as their interpretation and evaluation of the proceedings. The data
is, however, collected in different formats and is typically not synchronized in time across
formats. Thus, integrating and summarizing the data poses a challenge. Below is an example
of an integrated history/nmscribed-protocols data file:

"allright. Okay, so I want to see that week."
001 11:32:39 000 Pressed Button on View Button in Main Menu Bar
002 11:32:41 002 Released Button on Date Button in View Menu
003 11:32:43 002 Pressed Button on Cancel Button in Time Dialog
"Well, I probably need airspaces up there first."
004 11:32:45 002 Pressed Button on View Button in Main Menu Bar
005 11:32:47 002 Released Button on Change Layout Button in View Menu
"Who am I again? Phoenix"
006 11:32:52 005 Pressed Button on Undisplayed SUA List in General Layout Dialog
"Ah, Yankee 1."

007 11:32:58 006 Pressed Button on Add Button in General Layout Dialog
008 11:32:59 001 Pressed Button on Undisplayed SUA List in General Layout Dialog
"Ah, Yankee 2."
009 11:33:01 002 Pressed Button on Add Button in General Layout Dialog
010 11:33:02 001 Pressed Button on OK Button in General Layout Dialog

The integrated file adds a wealth of information to the history file and a previously
ambiguous event now becomes clear to the data analyst. The user opened a dialog box, and
then canceled it because she thought she needed to perform another step first. The user started
to perform a sequence of actions to fulfill an intention, made an evaluation of whether this was
a correct sequence of steps, decided it was not, aborted the current intention, and started a new
sequence of actions. This turns out to be an error in evaluation because the originally planned

16

sequence of steps would have accomplished the intention. The computer design was not at
fault in this situation because the action would have been disabled if it could not have been
done at that point in time. Combining the protocols and the history file allows a more complete
description of the human-computer interaction process. We can now determine the user
intention, identify errors in the stages such as action specification, and obtain information on
the two evaluation stages. It is interesting tr note that what we have classified as an evaluation
error would not have typically been recorded in a traditional error log as a user input error was
not made.

With the data in the current form, it is still a lot work to extract the explanation of events we
just described. Frequency of errors and comparing sequences of events across subjects would
be hard to do as all quantitative measures would need to be calculated manually. What is
required is a scheme for encoding the data that makes the scenario we just described very
explicit. Such a scheme is proposed below.

2.3 ENCODING SCHEME

A key contribution of this research effort involved the development of an encoding scheme
to structure the data collected during user-based evaluations in a way which permits easy
evaluation of the directness of user-system interactions. After many iterations, an encoding
scheme which seemed to usefully structure the data collected on the user-system interaction
process was developed; it is loosely based on Norman's stages of user-activity model. The
scheme is hierarchical in nature and, for the execution stages, somewhat similar to the Goals,
Operators, Methods, and Selection techniques (GOMS) approach developed by Card et al.,
1983. GOMS is a hierarchical method of analyzing the sequence of activities required by an
interface for performing various tasks with the system.

Deciding what we want to learn from our usability studies was the first step in the encoding
scheme's derivation. The primary purpose of a usability study is to address how well the
computer system supports the needs of a user during task performance. So far, we have
discussed measuring the directness of engagements-level of performance. We certainly wanted
to capture information necessary for this type of analysis. As was discussed in section 1, there
are also some higher level, more traditional measures of human performance which address
how well the user performed the task overall. These include measures of the correctness of
decisions, task time, task completion success, quality of the generated output, etc. Some of
these measures are affected by the computer design but some rest with the task skills and
experience of the human. For example, a very poor computer design could affect overall task
time and product quality. However, a user inexperienced with the task could also have a high
task time and poor product quality even if using a well-designed system. A user can interact
with the computer perfectly, in terms of making no HCI errors, but still fail to achieve task
objectives. Collecting information on how the human approaches a task, their problem solving
strategy, their skill at the task level etc. is necessary for drawing overall conclusions about the
computer system effectiveness. We wanted to extract these measures, in addition to measures
on the directness of engagements, from our encoded data.

17

Using the stages of user activity model as a basis, our first idea for an encoding process
was to use every user intention as a starting point and supply an encoding for all of the
following stages from the model. This brute force approach quickly runs into trouble in two
ways. First, adding the perception, interpretation, and evaluation stage to every user intention
greatly increases the amount of information, and, for the most part, these stages will just be
coded as having been performed correctly. Thus, only when there is a problem in these latter
stages are they of real interest. Also, the process of perception is continuous, and difficult to
code as a discrete action. Only an error in perception or taking extra actions to improve
perception is observable. The second problem is identifying the appropriate level of intention
to encode.

At what level of interaction do we apply the cycle? As noted by Norman (1986), the HCI
process can be broken down further and further until the level of a user's intention would be to
move the cursor. As the cursor is moving, there would be a continuous perceptual activity.
The completion of the cursor movement can then be interpreted and evaluated. When working
at such a low level, a single cursor movement activity is broken down into many stages, and
actually creates more data with very little information added. Other evaluation techniques such
as GOMS (Card et aL, 1983) and the cognitive walkthrough technique (Lewis et al., 1990)
have the same problem. Activities can be broken down lower and lower until the information
may be below the level of interest. The best level to work at depends on the questions to be
answered by the study. For our purpose, which is evaluating new prototyped software
systems, we are not interested in the very lowest keystroke level of interaction. We want to
focus on the semantic and articulatory levels rather than on the detailed execute level. With that
constraint in mind, a two-level encoding scheme was created - one level focusing on the user's
cognitive strategies or semantic level, and the second on the articulatory/execution level. The
second level was implemented at a user-interface object level, rather than at an individual
keystroke, cursor movement level.

2.3.1 Semantic Level

When trying to identify the stages associated with human-computer interaction activities,
the first four stages of the user activity model (goal, intention, action specification, and
execute) are easier to identify than the three stages spanning the gulf of evaluation.
Determining the user's goals and intentions is relatively straightforward, particularly if
predetemlined tasks are being performed. Information on action specification can be inferred
from the observed executed actions, although the mental processes involved in formulating the
sequence of actions are not observable. Examining sequential data records reveals information
on whether users think they have accomplished their intention, the evaluation stage.

Based on these concepts, and the more traditional task measures of interest, the following
encodings were developed at the semantic level of human-computer interaction. Each user goal
corr to an overall objective, probably provided by the conductors of the usability
study. The remaining codes allow us to categorize and identify the user's objectives.

18

Within each goal, we wanted to identify the task-space intentions the users have to accomplish
the goal, their intentions to execute specific computer steps to accomplish a single task, and
intentions they form to improve the perceptibility of the computer workspace. Each of these
user intentions is completed with a corresponding evaluation code that contains information on
the success of their endeavors. Also included in this semantic-encoding level are errors which
are made in any of the stages of user activity. From this scheme, information on the user's
goals, intentions, problem solving strategies, computer method strategies, goal achievement,
errors in each stage of user activity, and whether or not an error was recovered from can be
obtained. Successfully applying the codes involves extracting and analyzing all the various
types of data collected. Each code is defined more fully below.

Goal Achievement to be obtained by the user, usually predetermined by the
experimenter. The items to be accomplished in a task scenario.

Task intention The intention to complete one task contributing to the completion of a goal.
This is still in the user task space. For example, a goal may be to schedule all
requested missions, but a task intention may be to schedule a particular
mission.

Intention to A task step, to accomplish the given task intention. Each task intention is
execute performed by a single or a sequence of intention to executes. The intention to

execute is the description of the step the user wants to perform. For example,
opening a dialog box, performing some functions in the box, and closing the
box often characterized a single task step. The purpose for executing that step
is the intention to execute. One or more such steps may be required to
perform a single task intention. In the semantic encoding level, the intention
to execute was not further broken down. The details of the individual actions
in the step are provided in the articulatory level.

Intention to Task intentions were characterized by their intent to move users closer to their
improve goal, to the completion of a particular task. However, many direct
perception manipulation systems are graphical in nature and an artifact of using them is

that the user sometimes is forced to take one or more steps to improve the
perceptibility of the work area. This is distinguishable from the task intention
in that it is necessary but does not directly move the users closer to their goal,
nor is it done with the intent to complete a tasL It is on the same level as task
intentions because they interrupt the completion of a goal and have their own
set of intentions to execute. Finally, it is an artifact that the system design
should minimize and is therefore identified separately from other task
intentions.

Eva madon Each intention for either task, execution, or perception is closed off with a
corresponding evaluate state which encodes our interpretation of the success
of the endeavor. This state can be coded as:

19

"OK", meaning proper completion of the corresponding goal, task, or
execute;

"Inc", meaning the user has not fully completed the corresponding intention
(e.g., changed the time correctly but forgot to convert it to EST units);

"abort", meaning the user has abandoned the corresponding goal, task, or
execute; or

"wrong", the series of actions chosen to accomplish the task or execute were
not the right sequence of actions.

Errors detected at any stage were included in the semantic level encodings.
They are defined as follows.

Error in Occurs when the user is making the classically-defined "mistake". The intent
intention of what they want to do will not move them closer to their goal, even if they

execute the intent correctly. This type of error is often independent of the
user-interface, and may be the result of misunderstanding the task, or
forgetting some of the task details. For example, if a user was asked to create
a schedule for the time period 8 - 12 August, and they instead create it for the
time period 8 - 12 September because they thought September was the correct
month, they have made an error in intention. Note that if they meant to
schedule for August but inadvertently selected September rather than August
from a list of months, this would be an execution error, and if they failed to
notice the error, an enfor in evaluation as well. This highlights the fact that the
type of error can not be ascertained from the history log of user inputs alone;
an understanding of the user's thought process is also required.

Error in action Occurs if the user performs an action or series of actions on the
specjftcation computer which are not correct to accomplish the intended step. This can

range from having to search through menus to locate a command, to opening
the wrong dialog box, to omitting actions in a sequence of actions, etc.

Error in Occurs if the manual interaction with the computer is not as intended.
executon These types of errors include typos, selecting an item adjacent to the intended

item, etc.

Error in Occurs if the user encounters difficulty thought to be caused by a break-
perception down in the perceptual processing of the display. For instance, the user

schedules the wrong mission because the mission icons were small and close
together, or the status indicators were too small to be read correctly.

20

Error in Occurs if the user perceives the information correctly but fails to
inerpretaton interpret the system state correctly. For example, if a mission icon turns red

and the user determines this to mean "scheduled and OK" when in fact it
means "scheduled and in conflict with another mission", an error in
interpretation has occurred.

Error in Occurs when the user performs the evaluation stage, determining whether s/he
evaluation moved closer to his/her goal, and either they think they did move closer when

they did not, or vice versa. An example would be a user starts to perform the
correct sequence of actions in an execute, thinks he needs to do some other
action first to achieve his goal when he does not, and abandons his set of
steps to do an unrequired sequence of actions first.

Error recovery Occurs when a user notices that s/he has made an error and corrects it.
Usually, typos and other low-level errors are detected almost immediately and
corrected. If an error is not noticed at the time the user leaves the task, the
task is usually coded as incomplete.

The encodings are summarized in table 5.

The coding scheme at this level gives information on the user's overall stategy, the number
and types of steps performed to carry out a task intention, whether the step was performed
correctly at the computer level, whether the task was the tight task to meet the goal, whether it
was carried out completely, and where and what types of errors were made at each stage of
user activity, as well as whether it was recovered from or not. Information on the actual
sequence of commands and user inputs selected are not included at this level but at the
articulatory level. We believe the semantic level is generic enough to be applied to most
applications with direct-manipulation style interfaces.

21

Table 5. Semantic-Level Encodings

Encoding Definition
Goal Scenario step.

Task intention (Inttask) An intention to complete one task
contributing to the completion of a goal.

Perception intention An intention to improve the perceptibility of
(Int.per) a display.

Intention to execute One computer step (may be comprised of
(Int.exe) multiple actions) leading to the completion

of a task intention. Several steps may be
required per task intention.

Evaluate (Eval) The success with which the intention was
accomplished.

Error in intention (Err.int) The intention was incorrect and will not
accomplish the goal.

Error in action specification Wrong sequence of actions to accomplish
(Err.acsp) the intention to execute.

Error in execution Manual, motor error in executing.
(Err. exec)

Error in perception Break-down in human perceptual
(Err. per) processing of information on a display.

Error in interpretation User fails to interpret system state correctly.
(Err. inter)

Error in evaluation User mistakenly thinks has or has not
(Err.eval) moved closer to the goal.

Recovered error (Rec.err) Error was detected and recovered from.

22

2.3.2 Articulatory Level

The articulatory encoding level focuses on the actual sequences of commands and user
inputs required to perform each intention to execute; the encodings are hierarchical and the
articulatory level is the lowest level. Execution could be a single keystroke or a mouse
movement series of actions, depending again on the level that the analyst wishes to break down
the data. We attempted to keep the recorded action at the user-interface object level. Thus,
actions encoded were the use or selection of: menus, commands, buttons, window
manipulations, selection from lists of items, data-entry field actions, and scroll bar actions.

These are generic, user-interface objects. Selecting a command could, for example, result in
an action being taken, such as approving a mission, or it could result in the opening of a dialog
box. For each, the actual menu, command, or button name is recorded. The manipulation of
some application-specific objects could also be of interest, and the encodings should be added on
an individual system basis. The articulatory encodings are shown in table 6.

Table 6. Articulatory-Level Encodings

Encoding Definition
Menu A menu was opened
Command A command was selected
List-Select An item is selected from a list
Button A button was selected
Field An action was taken in a field
Scroll A scroll bar action was performed
Window A window action was performed
Application-specific objects Encodings to track the manipulation of

application-specific objects

An example is given below in figure 5 to illustrate the hierarchical nature of the encodings

for both the semantic and articulatory levels, illustrating the encoding relationships.

2.4 EXTRACTING USI INDICATORS FROM THE ENCODED DATA

This encoding scheme provides a generic structure to be applied to integrated sequential
data. Since analysis and interpretation of the various sequential data streams is needed to apply
the encodings, it is itself a form of analysis and it provides more information than any one type
of sequential data alone or the uncoded integrated data file alone. Additionally, the data is now
in a form amenable to quantitative analysis. From the encoded data, much information on the
effectiveness of the human-computer interaction process can be extracted.

23

GoalI

Task intention (task A)
Intention to execute (step 1)

Button 1
Execute error
Button 2
Recover from error

Evaluate step 1

Intention to execute (step 2)
Menu
Command
Error in action specification
Menu
Command
Recover from error
Button

Evaluate step 2
Evaluate task A

Perceptual intention (task C)
Intention to execute (step 1)

Tmbjr
TiMWb

Evaluate step 1
Evaluate perception

Evaluate Goal 1

Figure 5. Conceptualization of the Encoding Hierarchy

At the highest level, the users' problem solving strategies can be seen as well as the order in
which they attempted to conduct each goal, their task and perceptual intentions, the order of
their intentions, the method selected to accomplish each intention, the success of the various
levels of endeavors, whether they successfully completed each goal of those assigned and
where and what types of errors were made. At the lower, articulatory level, the actual actions
the user selected to accomplish each task and perceptual intention, the number of actions per
intention, the order in which they were taken, whether an execute error was made, etc. can be
seen.

24

The indicators of USI indirectness (given previously in tables 2-4, section 1) can now be
extracted from the encodings. The indicators for semantic indirectness and how they can be
identified are discussed below.

Semantic Indirectness of Execution

User intention not supported

Semantic indirectness exists if a user has an intention which the computer does not support
at all. If the user knows the intention is not supported by the system, s/he may voice the desire
aloud. This information can be extracted from the protocols. For instance, a user may say "I
wish I could bring up all parts of this mission on the screen at once." There is no function
which supports this desire but the request for it is now known and can be evaluated as to
whether it should be added or not.

A second indicator of the same problem is aborting a particular attempt to execute an
unsupported intention; in this case, the user does not know the intention is not supported. This
would be coded as a task intention, for example, Task Intention (show all parts of mission A),
followed by an intention to execute and a string of actions. The user will not be able to
successfully accomplish his intention, so the corresponding evaluates will be coded as aborts.

• Missing high-level object

A case of semantic indirectness occurs when a task can be performed but not at the level
desired. This results in applying an action to a series of lower-level objects repetitively. For
instance, a user may wish to change all four parts of a mission from 9:00 to 8:00 at once.
Since this is not supported with the system, a series of four Task Executes applied to each part
of the mission will be required to accomplish the intention to change the times of that mission.
Thus, an indicator of this condition is that the same steps will occur repeatedly to accomplish a
single task intention. Note the actual actions used to accomplish each execution may or may
not be identical as there may be alternative methods of executing a time change.

* Complex expression required

Complexity of the expression required to accomplish an intention is a cause of semantic
indirectness. If many steps (intentions to execute) are required, the correct steps are not
obvious, or the order of steps is not immediately apparent, the expression could be labeled
complex. The indicators of this condition are: the number of steps per task or perceptual
intention, steps are missing or extra steps are performed, and steps are performed in the wrong
sequence. Other indicators would be task or perceptual intentions are aborted, incomplete, or
wrong. This information is now easily extracted from the encoded data since we know what
the user intention was, we have all the information on the actual sequence of steps performed to
execute the intention, and the task intention evaluation provides data on the success of the
endeavor.

25

Semantic Indirectness of Evaluation

Extra step(s) required to perform an evaluation

There are two indicators that semantic indirectness of evaluation exists; this type of
indirectness is usually attributable to lack of or poor feedback in a system. One indicator
involves having to perform steps (intentions to execute) such as "check whether mission A is
now scheduled for 8:00" in addition to the expected executes required for a task. This indicates
that the user needed additional information to perform the evaluation of whether the intention
was successfully accomplished.

* Difficult or impossible to perform an evaluation

Semantic indirectness of evaluation also occurs if it is very difficult or impossible for the
user to perform an evaluation. For very poor designs, a user may be totally unable to ascertain
whether progress was made toward the execution of an intention. This inability to perform an
evaluation is usually due to a lack of feedback on the part of the system. Indicators of this
condition would be that an evaluation is not made (extract from the protocols), and a high
frequency of evaluation errors.

There are also causes of articulatory indirectness of execution. This is affected by whether
the form of the input action matches the intent of the action. Since there is often more than one
action required to carry out a single step, the ease of identifying the correct order of the actions
is also important. Indicators of articulatory distance are discussed below.

Articulatory Indirectness of Execution

* Complex steps required

Complexity of a single step expression is a cause of articulatory indirectness. Indicators of
indirectess would be a large number of actions per intention to execute. If, for example,
changing the mission time of a single part of Mission A from 9:00 to 8:00 required 12 actions,
this would be an indicator of indirectness. An example of a direct execution would be dragging
the mission icon displayed on a schedule from the 9:00 time slot to the 8:00 time slot with one
action. Obviously there is some subjectiveness in how many actions are too many. The
frequency with which each of the steps occurs will be an important factor in determining
indirectness. Frequently performed steps should have the fewest actions for proper execution
(unless the step frequency is due to a semantic distance problem, then the problem should be
fixed there). Other indicators of step complexity are errors such as performing actions in theinorrect sequence, omitting actions in a sequence, and adding extra, unnecessary actions. The
number of actions per intention to execute indicator is easily obtainable from our encoded data.
The latter would be coded as errors in action specification.

26

* Poor match between a single action meaning and its form

Another cause of articulatory indirectness of execution is a poor match between the form
and meaning for a single action. This can be indicated by errors in action specification of the
false action match type (Lewis et al., 1990), where the wrong form seems to match the user's
intent so the user selects the wrong action. Another indicator of a poor match would be the
inability to find or identify the right command in a set of menus or if the user has difficulty in
locating the correct action.

Articulatory Indirectness of Evaluation

* Complex display output

A complex display or displays with a poor layout are causes of articulatory indirectness of
evaluation. An inability to easily interpret the system state, or having to perform many actions
or absorb a lot of information to interpret the system state are indicators that this state exists.
This can be determined from protocols, and the frequency of errors in interpretation, and
possibly from the sequence of actions performed during interpretation. Interpretation is
difficult to assess as it involves the transfer of information from the display to the user. It is
difficult, without special data collection equipment such as an eye-tracker, to assess the number
of pieces of information used or the order in which information was assessed for an
interpretation.

* Poor match between display output form and its meaning

Another cause of articulatory indirectness of evaluation is a poor match between a display
output form and its meaning. This will result in errors in interpretation, and actions may be
taken to get more information to aid in the interpretation. For example, having to refer
frequently to a legend or key to interpret icon meanings is an indicator that they are not directly
conveying their meaning.

Indicators reflecting manual or perceptual difficulty

Indicators of perceptual and manual difficulty also exist They are described below.

* Poor manual interaction with the system

The ease of physically interacting with a system is a function of the input devices and their
parameters, the fit of the input device capabilities to the task, the manual dexterity of the user,
the limitations of the display real estate, etc. The best indicator of manual problems of
execution are frequent errors in execution. Some of the same actions which are taken to
improve perception (see below) also improve the ease of the manual interaction because objects
are made larger. Therefore, actions taken to increase the size of objects which are selectable
could be an indicator of manual interaction difficulties.

27

* Poor perceptibility of information on the display

The frequency of intentions to improve perception or the need to adjust the workspace are
indicators of poor user perception. Having to improve the perceptibility of the workspace is a
function of the task, the size and resolution of the display, the design of the user interface, the
design of a particular display, and even the user strategy selected to perform a task with a given
system. It may be unfeasible to totally eliminate this type of function with current technology
but computer aids, innovative design, or encouraging particular strategies may help to minimize
it. Oftentimes, there is a trade-off between minimizing this type of action, the perceptibility of
information on a display, and the amount of context available. When viewing large amounts of
infonmation, context is increased, movement is minimized but perceptibility is reduced. Very
frequent intentions to improve perception indicate there may be a problem.

A method for recording these indicators is presented below.

2.5 PROCESS FOR IDENTIFYING AND RECORDING INDICATORS

To efficiently apply this USI evaluation method, the indicators extracted from the encoded
data need to be recorded. Additionally, to assess whether USI design changes are called for,
information is required not only on each user's performance but also on the number of users
who experience problems in the same USI area, and the similarity of their problems. To
address these issues, the following data summarization table was developed. This table serves
several purposes. First, it aids in extracting the indicators from the encodings for each user,
particularly number of steps per task intention, number of actions per step, reason for each
intention, and the frequency and type of task intentions and intentions to execute. It also
summarizes the number and types of errors made during each intention, and the evaluation of
the success of each intention is readily apparent.

Int.task Freq Int.exe Freq # actions Eval of Eval of Errors Comments
(step) per int.exec int.task

int.exec

The tables also summarize each user's performance for comparison across subjects. For
each goal, the usability study conductor can assess whether many or only one user had
difficulties with certain goals, and whether their problems were similar or different.

28

One disadvantage of the table is that the sequencing of events is lost. This information,
however, is available in the encoded files. The comments column can be used to record
indicators of interest which are not inherent in the format, such as the user's stated desires
obtained from protocols, user's comments on the USI, more complete descriptions of errors,
noting of low-level repetitious actions in the data, etc.

Finally, to efficiently apply this method a determination needs to be made of whether an
interface design change is required to fix a problem or whether the problem is due to user
inexperience with the system. For example, if indicators show a user is performing a task
inefficiently, it could either be due to indirectness in the interface or the user may be unaware of
a more efficient method. While we would like all systems to be user-centered and every
interaction to be intuitively obvious to the user without any training, this is not likely to be the
case for the near future. With our evaluation method the ability to easily compare user's
performance at an interaction level allows assessments of whether problems are specific to a
single user or are occurring across users. Each situation requires interpretation on the part of
the usability analyst. User's performance changes, as they learn and become more experienced
with the system, can also be tracked with this method.

2.6 SUMMARY

Indicators that various types of semantic and articulatory indirectness are present in a
system were derived. By collecting and integrating both protocols and history files a fairly
complete description of the human-computer interaction process is provided and identification
of the indicators of indirectness can be fully supported. To enable extraction and quantification
of the indicators, an encoding scheme was developed. Finally, a data summarization table was
developed for recording metrics from the encoded data. The table allows for ease of
comparison of indicators across users. With this method, we feel that a more complete
graphical user interface evaluation is possible than with any of the existing, traditionally used
evaluation methods. In the next section, we describe an actual usability study that we
conducted and apply this methodology to analyze the collected data.

29

SECTION 3

APPLICATION OF THE EVALUATION METHODOLOGY TO THE MILITARY
AIRSPACE MANAGEMENT SYSTEM

In this section, the evaluation methodology is applied to the data collected during a usability
study performed on the Military Airspace Management System (MAMS) prototype. The steps
taken to format the data for application of the encodings, the tool used to aid in applying the
encoding language, a smmarizatn of the USI measures of effectiveness extracted from the
data, and USI implications are discussed.

3.1 MILITARY AIRSPACE MANAGEMENT SYSTEM (MAMS) USABILITY
STUDY

A usability study was conducted on a MAMS prototype. The MAMS displays and forms are
described in MTR 92B0000047 voL 2. Only the main MAMS display is shown here, in figure
6. The MAMS usability study was selected to test this methodology because it possesses a
graphical, direct-manipulation style interface. The interface was implemented with Motif.

3.1.1 Test Participants

Six test participants were used in the MAMS usability study. Four test participants were
from the Air Force, one test participant was from the Navy, and one test participant was from the
Marines. Five out of the six test participants had previous airspace scheduling experience and
four out of the six test participants had participated in the MAMS users group, which had
contributed to the system requirements. Additionally, the MAMS USI designer participated in
the evaluation to provide a baseline of expert performance in terms of user interface familiarity.

3.1.2 Apparatus

The test sessions were conducted in the User-System Interface Technology Testbed (USITr)
Evaluation Facility in MITRE M-Building. The MAMS prototype was hosted on a Sun
wortation. The software was specially instrumented to collect time-stamped user inputs. A
tripod-mounted Panasonic video camera with time and date stamps was used to videotape the
display for each participant.

3.1.3 Procedure

Test participants were scheduled for a one-day test session beginning with a 90 minute
training session and a pre-test questionnaire. The training session provided detailed information
and a demonstration of all applicable topics. A definition of a "good" schedule versus a "bad"
schedule for the purposes of the usability test was provided. The test session consisted of the

31

ra

IW

ow PN

in

Fiur 6. __ _ Main Scree

32N

participants completing the tasks outlined in the test scenario (see Appendix A) and completing a
post-test questionnaire. To keep the testing period reduced to a reasonable length of time, only a
subset of the total MAMS functionality was tested. A basic scheduling scenario was developed
that incorporated the core tasks of airspace scheduling. These tasks included: approving
mission requests, entering missions into the schedule, resolving mission schedule conflicts,
finding mission data in the schedule and generating mission reports. Additionally, test
participants were asked to build groupings or folders of airspaces to be used to facilitate repeated
data entry procedures. Test participants were encouraged to work at their own speed and were
given breaks whenever they requested them. A pilot study had been previously conducted to
verify the training and test procedures.

Test participants were provided with copies of the training materials and a MAMS prototype
users guide for their use during the test session. Test participants were additionally provided
with a quick reference template which presented information on keyboard accelerators, as well as
examples of valid date and time entries. Test administrators were available via intercom to assist
test participants when they requested help.

3.2 DATA SELECTED FOR FURTHER ANALYSIS

During some of the test sessions, software problems were encountered and the system failed;
this is to be expected when using a prototype. In some instances, the keystrokes before the
software failure were lost and in one case, the system failed twice and all of the data in between
the failures was lost. As a result of this, and because of time constraints for completing this
phase of the research, the data for the two participants with the data loss were excluded from
extensive analysis. The USI design expert's data was analyzed, to provide a baseline of expert
system (not task) performance. This made a total of five data files for analysis (referred to as
participants 1-5). This number is consistent with current research on the number of participants
required for usability testing. Virzi (1992) has found that 80% of all usability problems are
detected with four or five participants, and the most severe problems are detected in the first few
participants.

3.3 DATA FILTERING AND INTEGRATION

The first step in the data analysis process was to get the data in a form amenable to applying
the encoding scheme. As was mentioned earlier, the process of combining history file data with
protocol data is challenging and manual in nature. An excerpt of a raw history file, collected by
instrumenting the MAMS software, is shown below.

User Action Tm3 Obiect
ButtonPress Button1 11:32:39 viewCascadeButton View
Focusln 11:32:39 mainWindow
Focusln 11:32:39 mainWindowForm
Focusln 11:32:39 mainMenuBar

33

Focusln 11:32:39 mainWindow
Focusln 11:32:39 menuShell2
ButtonRelease Button 1 11:32:40 changeDatePushBu Set Date and

Times.
FocusIn 11:32:40 MAMS
FocusIn 11:32:41 ScreenSetup-popu p
ButtonPress Button 1 11:32:43 screenSetupCancel
ButtonRelease Button 1 11:32:43 screenSetupCancel

The raw history file needed to be filtered to reduce the size of the file; this was done by
removing extraneous data such as key releases which are preceded by a keypress. The filter also
combined typed text into a string, and summarized dragging actions to eliminate the description
of every location an item was dragged across. The filter also produced elapsed times which
reflect the users delay between keystrokes plus the computer response time from the previous
input.

The instrumented software used for this study had some limitations in the user actions that
were recorded and some user inputs were not captured. Actions not recorded included the
specific item name that was selected within a list, the characters that were deleted within a field,
and enlarging or reducing dialog boxes to improve visibility. Double and triple mouse clicks
were recorded as single clicks and the video tape was used to differentiate between them. Some
inputs were ambiguous, for example, "pressed the space bar" may be indicating a typed space or
the deletion of the contents of a field. Again, the video tape was used to determine the purpose
of the input.

After filtering, the history file was as shown below. The data items are: line number, the
time of execution, elapsed time in seconds, and the filtered user input.

001 11:32:39 000 Pressed Button on View Button in Main Menu Bar
002 11:32:41 002 Released Button on Date Button in View Menu
003 11:32:43 002 Pressed Button on Cancel Button in Date Dialog
004 11:32:45 002 Pressed Button on View Button in Main Menu Bar
005 11:32:47 002 Released Button on Change Layout Button in View Menu
006 11:32:52 005 Pressed Button on Undisplayed SUA List in General Layout Dialog
007 11:32:58 006 Pressed Button on Add Button in General Layout Dialog
008 11:32:59 001 Pressed Button on Undisplayed SUA List in General Layout Dialog
009 11:33.011002 Pressed Button on Add Button in General Layout Dialog
010 11:33.)02 001 Pressed Button on OK Button in General Layout Dialog
01111:33.05 003 Pressed Button on View Button in Main Menu Bar
012 11:33:10 005 Pressed Button on Date Field in Date Dialog
013 11:33:13 003 Typed "133" in Start Date Field in Date Dialog
014 11:33:39 026 Pressed Button on Day Field in Date Dialog
015 11:33:40 001 Typed "7" in Day Field in Date Dialog
016 11:33:45 005 Pressed Button on OK Button in Date Dialog

34

To integrate the history file with the "voiced-aloud thoughts", the filtered history files were
printed out, the video tapes were viewed and the verbal protocols were manually transcribed onto
paper in the appropriate location on the history file. The problems experienced by the
participants were also noted and recorded. The protocols were then typed into the filtered history
files using the EMACS editor in UNIX. Below is an example of the integrated
history/transcribed-protocols data file:

"Alright. Okay, so I want to see that week."
001 11:32:39 000 Pressed Button on View Button in Main Menu Bar
002 11:32:41 002 Released Button on Date Button in View Menu
003 11:32:43 002 Pressed Button on Cancel Button in Date Dialog
"Well, I probably need airspaces up there first."
004 11:32:45 002 Pressed Button on View Button in Main Menu Bar
005 11:32:47 002 Released Button on Change Layout Button in View Menu
"Who am I again? Phoenix"
006 11:32:52 005 Pressed Button on Undisplayed SUA List in General Layout Dialog
"Ah, Yankee 1."
007 11:32:58 006 Pressed Button on Add Button in General Layout Dialog
008 11:32:59 001 Pressed Button on Undisplayed SUA List in General Layout Dialog
"Ah, Yankee 2."
009 11:33:01 002 Pressed Button on Add Button in General Layout Dialog
010 11:33:02 001 Pressed Button on OK Button in General Layout Dialog
011 11:33:.05 003 Pressed Button on View Button in Main Menu Bar
"Okay, now I want to see my dates. Start date of.."
012 11:33:10 005 Pressed Button on Date Field in Date Dialog
013 11:33:13 003 Typed "133" in Start Date Field in Date Dialog
014 11:33:39 026 Pressed Button on Day Field in Date Dialog
"For 7 days."
015 11:33:40 001 Typed "7" in Day Field in Date Dialog
"For duration of five hours I will keep, cause I like to see five hours."
016 11:33:45 005 Pressed Button on OK Button in Date Dialog
"Okay, oops, forgot to change the month."

3.4 APPLYING THE ENCODING SCHEME TO THE INTEGRATED DATA
FILES

Working from hardcopies of the integrated data files, the video was viewed a second time
and the encoding scheme was applied to the hardcopies of the data files. The integrated files
were then transferred to the IBM PC from the Sun workstation. Next the encoding language
was applied to the integrated data files using the SHAPA software tool.

35

3.4.1 Encoding with SHAPA

SHAPA (Software for Heuristically Aiding Protocol Analysis) was developed at the
University of Illinois at Urbana-Champaign Engineering Psychology Research Laboratory
(Sanderson et al., 1989). SHAPA is a protocol analysis environment where researchers can
encode data with any encodings they choose. Data can be coded in a variety of different ways,
depending on what questions need to be answered, and analysis can occur at many levels.
SHAPA supports sequential data analysis of encoded protocol segments. The analysis
techniques it supports include transition matrix analysis, lag sequential analysis, and frequency
of cycles. SHAPA works on single-stream, un-timestamped verbal and non-verbal protocols; it
runs on an IBM PC or compatible.

To encode the data with SHAPA, predicates (names of the codes to be applied) are specified.
These would be our task intention, intention to execute, etc. as defined in tables 5 and 6. To the
articulatory-level encodings, we added two application-specific codes: manipulations of the
timebar (which affected how much of a schedule was viewed), and manipulations of the mission
icons. The mission icons could be moved by dragging with the mouse, and selected by clicking
on them. Once selected, information about that mission appears in an information field, and
selected commands could then be applied to it (approving, denying, editing, etc.).

Each predicate, which is general, can also have a user-defined value, which is a specific
instance or further description of the predicate. Figure 7, an excerpt of the semantic level
encodings firo the MAMS study, illustrates many of these concepts. For the predicate
INT.TASK, 1-I-setdate was the value descriptor. 1-1 means this is the user's first task intention
for goal 1. Setdate means the task was to set the date and time of the schedule. The SHAPA
screen looks like the figure. The data file is displayed in the right column of the screen and the
corresponding encodings are typed in the left column. SHAPA will prompt for correct syntax
based on the user pre-defined predicate and value list. The encoded files could then be printed
out, with an option to also print the protocols and keystrokes around the encodings. An
articulatory level encoding is shown in figure 8. The complete set of predicates and values used
in the MAMS study are provided in Appendix B.

36

"Alright. Okay, so I want to see that week."
GOAL(1-setdate) 001 11:32:39 000 Pressed Button on View Button in

Main Menu Bar

INT.TASK(l-l-setdate) 002 11:32:43 004 Pressed Button on Cancel Button in

INT.EXEC(I-1.1-setdate) Dat Dialog
ERR.EVAL (el* 1-1.-setdate- "Well, I probably need airspaces up there first."

003 11:32:45 002 Pressed Button on View Button inthought needed airspaces on display) Main Menu Bar
EVALUATE(-1.1-d -ab 004 11:32:47 002 Released Button on Change Layout

Button in View Menu
T.EXEC(1-1.2-setlayout) "Who am I again? Phoenix"

005 11:32:52 005 Pressed Button on Undisplayed SUA
List in General Layout Dialog
"Ah, Yankee 1."
006 11:32:58 006 Pressed Button on Add Button in
General Layout Dialog
007 11:32:59 001 Pressed Button on Undisplayed SUA
List in General Layout Dialog
"Ah, Yankee 2."
008 11:3301 002 Pressed Button on Add Button in
General Layout Dialog
009 11:33:02 001 Pressed Button on OK Button in
General Layout Dialog
010 11:33:05 003 Pressed Button on View Button in

EVALUATE(1-1.2-setlayout-ok) Main Menu Bar
"Okay, now I want to see my dates. Start date of.."
011 11:33:10 005 Pressed Button on Date Field in

INT.EXEC(1-1.1-setdate) Date Dialog
012 11:33:13 003 Typed "133" in Start Date Field in
Date Dilog
013 11:33:39 026 Pressed Button on Day Field in Date

ERR.EXEC(e2* 1-1.1-setdate-typo) Dialog"For 7 days."

014 11:33:40001 Typed "7" in Day Field in Date
ERR.ACSP(e3* 1-1.1-sedate- Dialog

forgotsetmonth) 'For duration of five hours I will keep, cause I like to
see five hours."

EVALUATE (1-1.1-setdate-inc) 015 11:33:45 005 Pressed Button on OK Button in
Date Dialog
"Okay, oops, forgot to change the month."

Figure 7. Application of Semantic Level Encodings

37

GOAL(1-setdame) "Alright. Okay, so I want to see that week."
INT.TASK(1-1-setdate) 001 11:32:39 000 Pressed Button on View

INT.EXEC(1-1.1-setdate) Button in Main Menu Bar
MENU(view,m) 002 11:32:43 004 Pressed Button on Cancel
0OMMAND(date,m) Button in Date Dialog
BUTIX)N(date-cancel) "Well, I probably need airspaces up there first."
VLUT'1'ON(I-1.1edate-a) 003 11:32:45 002 Pressed Button on View

EVALUATE(1-1.1-setdate-abort) Button in Main Menu Bar
004 11:32:47 002 Released Button on Change

NT.EXEC(1-1.2-setlayout) Layout Button in View Menu
MENU(view~m) "Who am I again? Phoenix"

005 11:32:52 005 Pressed Button on
COMMAND(layout,m) Undisplayed SUA List in General Layout Dialog

"Ah, Yankee 1."
006 11:32:58 006 Pressed Button on Add

LISTSELECr(layout-undis) Button in General Layout Dialog
007 11:32:59 001 Pressed Button on

BUTION(layout-add) Undisplayed SUA List in General Layout Dialog
"Ah, Yankee 2."
008 11:33:01 002 Pressed Button on Add
Button in General Layout Dialog

LISTSELECT(layout-undis) 009 11:33:02 001 Pressed Button on OK
Button in General Layout Dialog

BUTON(layout-add) 010 11:33:05 003 Pressed Button on View
BUTrON(layout-ok) Button in Main Menu Bar

EVALUATE(1-1.2-setlayout-ok "Okay, now I want to see my dates. Start date
INT.EXEC(1-1.1-setdate) of.."

MENU(view~m) 011 11:33:10 005 Pressed Button on Date Field
COMMAND(datem) in Date Dialog

012 11:33:13 003 Typed "133" in Start Date
FLD(date-date-edit) Field in Date Dialog

013 11:33:39 026 Pressed Button on Day FieldFIELD(date-durdays-edit) in Date Dialog
"For 7 days."
014 11:33:40 001 Typed "7" in Day Field in
Date Dialog
"For duration of five hours I will keep, cause I

BUTON(date-ok) like to see five hours."
015 11:33:45 005 Pressed Button on OK
Button in Date Dialog

EVALUATE(I-1.1-setdate-inc) "Okay, oops, forgot to change the month."

Figure 8. Articulatory Level Encoding Example

38

3.4.2 Evaluation of the Data Transformation Process

The times required for the data transformation process are summarized below. The table
shows approximate times for different parts of the data transformation process for each
participant. The times for participant 1 are high because we were experimenting with techniques
and researching various encoding schemes. We improved the techniques further after analyzing
the data for participant 2. The difficulty of the data transformation process points to the need for
a specialized tool to support this process, which is currently scheduled to be developed in
FY'93. This is discussed further in section 4.

Table 7. Data Transformation Times
(approximates in hours)

Participant # Transcribe Type in protocol Manually apply Enter data into
Protocol split the files the encodings SHAPA

Participant 1/ 42 (with 12 > 90 30
Technique keystrokes)
experimentation

2 18 18 (before filter) 42 30

3 15 3.5 18 24

4 15 3.5 15 15

5 (expert) No protocols 1.5 6 8

3.5 TRADITIONAL PERFORMANCE MEASURE RESULTS

As was mentioned earlier, it is still of interest to track the traditional performance measures.
The total time used by each participant to complete the test scenario is shown below in table 8.
This is followed by the completion success of each of the ten goals in the scenario, table 9.

As expected, while we learn some useful information about the system from these global
measures, such as most participants had trouble successfully completing goal 5, we do not learn
anything about the type of difficulty users experienced or how the system needs to be improved.
There is not enough granularity in this type of data.

39

Table 8. Traditional Performance Measure for Each Participant

Goal Pardcipuat 1 Pardcflpan 2 Participan 3 Participant 4 Participant 5
1 Comp Comp Comp Comp Comp

Set date &
time

2 Inc. (Did not Inc. (Did not Inc. (Did not Inc. (Due to Comp
Review & schedule W schedule W schedl crash, chose not
schedule zones). zones.) 1240025 or any to re-schedule
requests new missions.) missions.)

3 Comp Comp Inc. (Did not Comp Comp
ncale folder pr create

FIGHTWING button.)
4 Comp Comp Inc. (Did not Comp Comp

Cne folder pess aeate
BOMETEST button.)

T Wrong (Correct Wvnag (Added Inc. (Did not Inc. (Did not Comp
Remove an procedumbut airspace instead pies create press create

airspace from a renmoed of removing, button.) button.)
folde airspace from Did not press

wronsi folder). crete button).
6 Comp Comp Inc. (Folders Comp Comp

Enter newincre fiom
requests and Goals 2, 3, and

schedule 4. Wanted toleave.)
7 Comp Comp Corp Comp Comp

Check on a

n9 Comp Comp Comp Comp Comp

Change time

of a reques for
a week

10 Inc. (Forgot Wrong (inted Inc. (Told not Inc. (Did not Comp
Print reports Canyon Run. Neptune instead to print r54.) press print

Did not press of Phoenix.) button for r54.)
print button for

Time to 2.5 hrs 4.0 its 3.0 hts 2.5 tis 1.25 its
complete

task

40

3.6 EXTRACTING THE USI INDICATORS AND OTHER PERFORMANCE
MEASURES

From the encoded data files, measures and indicators of USI effectiveness can be extracted
and summarized. We have only experimented with a few of the potential analysis techniques that
could be applied to the encoded data. Our quest is to find the most useful analysis techniques
and automate the application of the techniques as much as possible.

3.6.1 Measures Extractable from the Summary Data Tables

The summary data table was completed for each participant's data. This was performed
manually as no tool supports the extraction of number of actions per step and number of steps
per task, etc. from data. SHAPA does, however, do frequency counts so the frequency with
which the predicates, e.g., task intentions and intentions to execute, occur were generated as a
check that none were missed. The hierarchical encoding structure facilitated the extraction of
these measures. The full data summary table for participant 2 is given in Appendix C (others can
be obtained upon request), and a sample excerpt from participant 1 is included in figure 9. It is
interesting to note that examining the user-interface expert's data provides us with information on
the best the system can do. The users' performance provides us with information on more
realistic intentions, and whether they found the system implements functions in a direct and easy-
to-use fashion. If a problem can be identified from the interface expert's data it should be fixed
as it will definitely affect all the users.

There is a data summary table for each goal, which corresponds to one task from the task
scenarios provided to the users as part of the usability test. The first column, with heading
int.task, contains a list of all the user's task intentions while performing the goal. The second
column contains information on the number of times each task intention was performed. The third
column contains information on the intentions to execute for each task intention (the computer step
or method used to accomplish the task), followed in the fourth column by the number of times
each step was performed. The fifth column contains information on the number of computer
actions, at a user-interface object level, that were performed to accomplish each intention to
execute. This is followed by the evaluation of the success of each of the intentions to execute in
the sixth column. The column labeled evaluation of task intention (eval of int.task) provides
information on the evaluation of the success of each of the task intentions. This is followed by a
listing of errors and their type which occurred during the task followed by the usability analyst's
comments. The comments could include information on the causes of errors, more details on
errors, interesting user comments made during a task (particularly when stating desires for missing
functions), the noting of trends in the data, reasons for incompletes on tasks, etc.

Interpreting the data requries familiarity with the goals, tasks, and system implementation. A
person with that knowledge can see from the summary data tables the ease with which each part
of the activity was completed. In figure 9 this user had the intention to set the time and date
"setdate" three different times which is indicated by the 3 in the second column of the table. The
first time ended in an abort due to the evaluation error the second time ended with an incomplete

41

due to the failure to put the time units in EST time; and finally the task was completed correctly.
Within the three occurrences of this task, the user had five intentions to execute. On at least one
occurrence of the task intention, two or more executes were performed consecutively (indicated
by the 5 inLexecs for only 3 inttasks). We can deduce from the variety and number of errors
encountered during the intention to set the time and date that participant 1 had some minor
difficulties in performing this intention. The problems included five errors; the first error (el)
was an error in evaluation which caused the user to abandon a correct sequence of steps, as she
thought a different task needed to precede this one. There was also an error in intention (e6),
where the user forgot to perform a part of the task; when changing the time, she neglected to put
the time in EST units as specified by the task scenario. She also had one error in action
specification (e3) as she had intended to change the month but omitted this action. The other
errors were all minor execute errors; the user recovered from all of the errors which is indicated
by the "R" following each error code.

Goal 1
Int.task Freq Int.exec Freq # actions Eval of Eval of rrors Comments

per int.exec int.exec int.task
1 -1 setdate 5 3 abort abort 1 - err.eval - R T'inks

22 - typo - err.exec must have
8, 3. 7 inc, inc, in inc airspaces

Ok - forgot to set up first
7 OK nth - err.acsp- R

- menutype -
rr.exec - R

o- not in EST -
_rrint -R

1-3 verily 1 move 1 1 OK OK
missions timebar
1-2 set 1 set layout 1 10 OK OK
airspaces

Figure 9. Sample from the Summary Data Tables of Participant 1 for the Goal
"Set Time and Date."

On this task, the most serious problems are the evaluate error and the intention errors. Why
did the user think she needed airspaces on the screen before she could set the time and date? Did
the user just forget to put the units in EST time and forget to change the month field or did the
nterface design contribute to this omission in some way (e.g., by having old default data filled in
the fields, not making it apparent to the user that they did not alter these fields)? Could the
interface have prompted the user in some way, or made the current units more obvious?

After evaluating user problems for each participant on goal 1, the next step would be to
compare performance on goal 1 across users. As a baseline, we first check the user interface
expert's performance. The interface expert took 7 actions to perform this task, with a frequency
of one. A scan of the other users shows that three others nearly matched that performance, and
only I other user had some errors in action specification. Based on these results, we would

42

recoImmnd checking whether the interface contributed to participant l's difficulties, but overall
we would conclude the task was supported reasonably well by the interface. [Note: we later saw
that this same task, when performed during other goals, did cause users difficulties and changes
were recommended. This reinforces the need for realistic task scenarios to test the USI. As the
user performance for each goal is evaluated, a sheet should be kept rating each area, as well as
noting USI problems to be considered for redesign.

As was mentioned previously, when assessing how many actions are too many, both
frequency of the action needs to be considered as well as the task itself. If the task involves
editing data in three data fields, you would expect a minimum of three actions so 4 or 5 actions
would be reasonable. If the task is to change one data field and this takes 4 or 5 actions, it is
cause for concern.

3.6.2 Summary Data Table Indicators for Goal 2, Scheduling Missions

Next, we will examine the users' performance for scheduling missions in goal 2. Figures 10
and 11 show excerpts from the summary tables for the expert and a user, respectively.
Scheduling involved reviewing the requests, approving or disapproving them, and resolving any
conflicts that migh have resulted. In order to evaluate how well the system supports the
scheduling task, we need to understand the task. The task was to schedule missions, some of
which consist of multiple parts (figure 6 of the MAMS display shows missions connected with
lines which indicate multiple part missions). All total, there were 71 mission parts to be
scheduled for goal 2.

With the MAMS prototype, there are two methods for approving requested missions. One is
to select the requested mission icon with the mouse, and select the command approve from the
schedule menu. The other is to select the requested mission icon and press 'control a', the
command by-pass equivalent to the menu command. The first method is counted as 3 actions
(select icon, select menu, select command), while the second method is counted as 2 actions
(select icon, press the keys).

What indicators exist of indirectness from the user interface expert's performance? The
expert averaged 2.1 actions/mission part. Two indicators of a problem would be two different
levels of repetition within the task intention column and within the execute intention column.
The users task is to schedule all the airspace requests. After the user has approved the requests,
the system will inform the users if conflicts for airspace exist. The user then resolves the
conflicts. A sensible approach to this task, therefore, is to approve all the requests for airspace,
and then resolve the identified conflicts. As can be seen in column one, approving multiple
mission requests is not possible. If it were, there would be a single "sch" task, preceded by
selection of the missions to be scheduled. Instead, we see "sch" tasks for each mission. The
user is forced to work at a lower level and form an intention to schedule each mission request
individually.

43

Goal 2
Int.task Frq Int.exec Freq actions Eval of Eval of Error Corn-

_r int.exec int.exec int.task ments
2-1 setairspaces 1 movetmebar 1 1 OK

setairspaces 1 5 OK OK
2-2 schwpn-m I schwpn-m 1 2 OK OK
2-3 schbb-m 1 schbb-m 1 3 OK OK
2-4 schdact4 3 schdact-t 3 2 6K Inc. Not all

2 OK inc parts of
2 OK OK mission

2-5 schwon-t I schwpn-t 1 2 OK OK-
2-6 - - wousmn- 1 2 OK OK
2-7 schwA 1 schwpn-h 1 2 MK OK
2 1 1 2 OK OK
2-9 sch__-m I schsdt-m 1 2 OK OK_
210 schsdt-t I schsdt-t 1 2 OK OK
2-11 schedt-w I schsdt-w 1 2 OK OK
2-12 schsdt-h T_ schsdt-h 1 2 OK OK
2-13 schthawk-h I schthawk-h 1 2 OK OK
2-14 schsadt-f I schsdt-f 1 2 OK OK
2-15 schbravo-m 4 schbravo-m 4 2 OK inc not all

2 OK inc parts of
2 OK Inc mission
2 OK OK

2-16 schbravo-t 4 schbravo-t 4 2 OK inc
2 OK inc
2 OK Inc
2 OK OK

"*Sch means schedule, followed by the mission name. After the dash is the day of week, with "h" used for Thursday.

Figure 10. The User Interface Expert's Summary Data Table for the Goal "Schedule Missions".

The mission show in line 2-4 is an exanple of a multiple part mission. As seen in column 4,
the intention to execute this task was repeated three times, indicating that there was no way to
apply the schedule approve command to multiple parts of a single mission. The user is again
forced to work at a lower level than desired. This example differs from the first in that in the
first case we were not missing a possible higher-level object; in the first case we wanted to
tempauriy group objects for the sole purpose of applying a command once. Here, its
conceivable that the total mission with all its parts should be an object of its own. In fact, in
some cases the system does consider the multiple parts as a single object, such as for dragging
on the display. A conclusion we can draw so far is that the application of the scheduling
commands such as approve should be reconsidered as to the level at which they can be applied.

To determine exactly how many times this InL exec -> Tape -> Menu -> Command ->
Evaluate -> Evaluate -> InLexec was executed, we ran a frequency of predicate cycles on the
expert's data. This counts the number of times the same sequence of events occurs. The results
revealed this cycle occured 62 times. Unfortunately this analysis routine, as discussed later, can
only be run at the predicate level. From examining the data, however, we know that this cycle is

44

the approve mission request cycle of actions. From this data, we would assume that the system
does not support selecting multiple missions to which a single scheduling command can then be
applied; this is the case.

Figure 11 shows a real users summary data table for this same task. We first notice the same
types of problems that the expert had. For multiple part missions such as r54-w which has two
parts (inutask 2-32), the number of actions increases - scheduling all of r54-w takes 4 actions
implying the system does not consider the various parts of r54-w to be a single object This
results in repetitive sequences of action on the user's part.

Int.task Fmq Int.exec FWq# actions Eval of Eval of Errors Corn-
__r int.exec int.exec int.task ments

2-24 rescont 1 I ooklhaw /d-w 1 4 -K

thauk/s-w leokwln-w 1 1 OK
movesdt-w 1 6 OK OK

2-25 schedt-w I schsdt-w I 3 OK OK
2-26 scwnwIe d I IV- 2 OK IOK

2-27 sch1240026-w I Iook1240026-w 1 2 OK
sch1240026-w 1 1 OK OK

2-28 schgunex-w 2 iookgunex-w 2 2 OK
2 OK

Iookthawk 1 2 OK abort wants to
schgunex-w 1 2 OK OK schedule

thawk
2-29 schthawk-w I movsthawk-w 1 1 OK

_chthawk-w 1 2 OK OK
2-30 sc -1ox-w x-w 1 2 OK

movefox-w 1 1 OK e14 - conflict
schfox-w 1 1 OK OK state - R

I eorr.inter
2-31 resconffoxf I movefox-w 1 3 OK e15-dc-R-

#hiAk-w lookthawk-w 1 1 OK OK err.exec
2-32 schr54-w I Iook54-w 1 2 OK

schr54-w 1 5 OK OK
2-33 schred-h I Ikxed-h 1 3 OK

schred-h 1 6 OK OK
2-34 schthawk-h I looklhawk-h 1 6 OK 916 - edit

schthawk-h 1 1 OK OK under
schedule -
err.acsp

2-35 schgunex-h I Iookounex-h 1 3 OK
schpunex-h 1 1 OK

Figure 11. A User's Summary Data Tables for Goal 2 "Schedule Missions".

A new pattern is also apparent in the user's data shown in figure 11: a repetitive sequence
occurs at the intention to execute level. Before approving a mission, the user peforms an
execution to "look" at the mission description; this combination is represented, for example, in
task 2-27 as look1240026-w, followed by sch1240026-w. A user can look at information about
a mission in two ways. When a mission is selected on the display, some information about the
mission appears in the documentation line at the bottom of the display. More complete

45

information on a mission can be obtained by selecting a mission and opening the edit dialog box.
This can be performed by double clicking on the mission. This user is finding it necessary to
open the edit box via a double click to obtain information about the mission before approving it;
we know this because the look took 2 actions, a double click on the mission icon followed by the
close button. Checking across other users' data, we see the same occurrence -- users feel a need
to look at the mission information contained in the dialog box before approving the mission.
This implies that these two steps should be combined in some way, to reduce the number of
actions and to make it more direct Possible solutions include identifying the key information
from the edit box and putting it in the documentation line, or, if the information is varied or too
long, putting an approve button in the edit dialog box (which also closes the box), so the
command can be done immediately after looking, and shorten the number of steps. These
indicators of indirectness are good examples that lack of user errors do not imply a direct
engagement is occurring. It is also a third, distinct type of repetition from those two forms
already discussed. The other examples involved the need to apply a single action to multiple
objects whereas this is the need to make the display of information better and to combine action
sequences. Finally, it illustrates the need for using real users in testing since the USI "expert"
did not exhibit this same behavior pattern.

Some key indicators for all the users' "schedule missions" goal, including those discussed so
far, are:

Indicator Potential Problem
Rq.petiive sequences for applying the apWove Can not select groups of objects for application of a single
conmmad to missions command

Repetitive sequences for applying the approve System does not consider multi-part mission as an object for
command to paun of a single mission the case of applying scheduling commands

An abort while trying to bring up all prts of the System does not consider mission parts as an object for the
"dact" mision on the display case of finding the whole mission

An exta intention to execute required to "look" Information in dialog box is often required before mission
when the task intention is to schedule a mission can be approved. To increase feeling of directness the two

steps should be combined in some manner.

fteeeptual/execwe mrs When the missions were physically displayed too close
together, users would select the wrong one. There was no
way to differentiate missions when the labels were very small.

Execute err, many actions for recovery A user selects deny from menu rather than approve which is
adjacent. Lack of undo causes user to perform multiple actions
tofix.

Mission icons were often accidentally moved. Users then
had to manually reposition them. Two problems are icons
are too sensitive, and there is a lack of an undo feature,
resulting in multiple actions to undo a previous action.

46

Indicator Potential Problem

An extra task intention required to "see schedule, System provides no way on main scrccn to allow user to
or to find next anscheduled mission; occured with automatically "jump" to: next mission, next unscheduled
high frequency (16,10,15) and many actions mission, next mission part within a mission, next conflict,
per step etc. All movement between icons is by manually searching

and mampulating.

Errors in evaluation on task completion The system provides no indicator on the main screen of
number of unscheduled missions remaining within the
schedule period - many users thought they had fimished
schbeduling all requests when they had not. This information
was available, less directly, elsewhere in the system.

3.6.3 Summary Data Table Indicators for Goal 4, Creating Folder Fightwing

As a final example of how indicators of potential problem areas can be extracted from the
data, we will look at the summary tables for creating the folder named fightwing. A folder is a
group or collection of airspaces which are created by the user. The folder function allows single
actions to be applied to many objects at once. For example, rather than selecting individual
airspaces to be displayed on the main screen, a folder can be selected for display, and all the
airspaces in the folder will be displayed. This is a good function as it minimizes repetition of
actions. We will soon see, however, that its implementation is not so good.

In the test scenario, users were asked to create a folder, name it fightwing, and add four
airspaces to i The first indicator of indirectness we see from the expert's summary data table
(figure 12) is the high number of actions, 18, required for the intention to execute the adding of
the four proper airspaces to the folder. Looking back to the articulatory-level encodings, we see
that many airspaces are being selected and deleted from the folder. The way the system
implements this function is to include any airspaces currently on the main display in the folder
when it is first created. If some or all of these airspaces are not wanted in the folder, they need
to be individually selected and deleted (itself a repetitive action as these actions can only be done
on individual objects). This resulted in more actions to remove unwanted airspaces than actions
required to add wanted airspaces. There are several options for increasing the directness here.
One is to not have displayed airspaces default into the folder. Assuming that the system
designers had a good reason for implementing the folder function this way, an alternative way to
reduce the number of actions and make this more direct would be to have a function which clears
the default airspaces with one action. Or, multiple selected airspaces could be deleted or added at
once. A more complete redesign would involve directly dragging wanted selected airspaces into
a folder icon, rather than selecting from a list and using a button.

47

Int.task Freq Int.exec Freq # actions Eval of Eval of Errors
per int.exec Int.task
Int.exec

3-1 createfight 1 openfaf 1 2 OK
entemame 1 2 OK
properairspaces 1 18 OK

I I createfolder 1 1 OK OK

Figure 12. Summary Data Table for User-Interface Expert on Creating Folder Fightwing

Examining the users' data will provide us with information on how direct users found the
engagements required to perform this task. The summary data for the create folder fightwing
goal for participants 2 and 3 is shown in figures 13 and 14. An indicator of a problem is
apparent in participant 2's data. In the intention to execute column we see a "checkfight" step,
which takes three actions. Also, the createfolder step itself took 2 actions, as is shown in the #
of actions per int.exec column, rather than the one required, and the participant had an error in
interpretation. From the comments column, we see that analyst who created the summary tables
noted that after the user selected the create folder button the first time, the system provided no
response. The user assumed nothing had happened as the system state did not seem to change,
and pressed the button again, still Wying to execute her intention. The system had indeed created
a folder the first time but since it provided no indication of its change of state, the user
erroneously concluded that nothing happened. The user was finally forced to perform extra
actions as part of an extra step, to obtain the information necessary to correctly interpret the
system state, and make the determination as to whether she had moved closer to her goal.

Participant 3 (figure 14) had even more difficulty creating a folder than participant 2. This
participant was the least familiar with the system. The user had difficulty in locating the correct
menu command to open the correct dialog box. The user would eventually learn this with
training but looking at the menu hierarchy, we see that the correct command is nested
hierarchically within a different command, making it difficult to locate via searching through the
menus. Given there is plenty of space for commands, the use of hierarchical menus could
probably be eliminated. Looking at the frequency count for "openfaf' we see that it takes the
user three tries to open the correct dialog box within which to create folders. When the user
finally found the right dialog box, and perfomed close to the correct sequence of actions, he
then closed the dialog box without pressing the create button, and nothing was created. Given
the lack of feedback to this action, the user did not notice that nothing was created. This is a case
of an inexperienced user interacting with a poor design to create a very poor sequence of
engagements.

48

Int.tFsk Freq Int.exec: Fraq actions val of Evi of Errors Comments
__r int.ex nt.exec int.tas_

3.1 createfight openfaf OK
entername 1 OK 0.16 - typo - Only wanted 4
properairspace 1 7 OK R - exec.err airspaces. If

folder came up
blank could dc 4
times to
complete. Have
to add one by

createfolder 1 OK 0.56 no one? Remove
created unneeded ones
feedback also.
err.inter

The create
folder button

checkfight 1 OK OK gives no
feedback so
they have to get
out, bring up
folder select to
see if created

Not an error in
interpretation
but inability to
interpret system
state. Semantic
dist on oval side
Don't know if
goal was met.
Check implies
evaluation

Figure 13. Summary Data Table for Participant 2 on Creating Folder Fightwing.

49

Int.task Feq Int.exec Feq # actions vi o val of Errors Comments
_ per in~exec nt.exec nt.task

3-1 create fight 2 open fat 3 3 ng e38 - aborts file wrong 06 -
opens layout - layout DB.
err.eval - R Opened right

one, thougt was
2 wong wrong

e43 - wrong DB - change layout,
6 OK err.acsp -R ok- figuring out

e50 - wrong DB 0B
err.acsp - R Opened Ocreate

entername 2 2 WMn request"
4 DK no e39- wrngD 13-

err.acup - R Inc not created.
e51 - must hit was finally
creat button getting close.
after data entry - Finally found
err.acsp right DB and

entered data
*46 - changing and forget the
airspaces not create button

proper 2 14 abort making a folder - Did he think he
airspaces err.eval - R did it properly?

Yes SN5, 30832 wrng •rng e40 - hits button Realizes wrong
before selecting DO
list select -
err.acsp
e41, e44 - layout Change layout
wrong DB-
err.acsp screen was
e42,e45- changing as
remaining they added/
airspace layout - removed air-
err.inter - R spaces and they

did not notice
3-2 check Fight I edit "arch1 3 rt Not there so

field must abort and
I I _ I_ IrI_ Istart over

Figure 14. Summary Data Table for Participant 3 on Creating Folder Fightwing.

There are numerous examples of how indicators can be extracted from the summary data
tables to provide information on indirect interactions; only a few examples were shown here.
Next, we will conclude with a brief discussion of the errors broken down by stages.

3.6.4 Error Indicators

Appendix D contains all of the erras made in each stage, grouped by type, with the number
of times each participant made that error. Errors are obviously useful indicators of USI
problems. Each error listed in the error summary in the appendix should be examined for

50

potential USI improvements. That does not mean that all command names, locations, and
sequences causing difficulty should be changed. Indicators of a serious problem requiring
changes would be multiple participants making the same error, the same participant repeating an
error, or the error has serious consequences. Comparing errors across participants also provides
much information on the participants' skill level as well.

Some participants, for example, were not proficient with the mouse and made many execute
error which involved the use of the mouse. The participants also were not skilled typists and
had a total of 65 typos. It is up to the system designers to decide if these problems will diminish
with practice or whether the system can be modified to aid the unskilled input device user.
Errors in action specification were a good indicator of the user's level of experience with the
system as well as the articulatory directness. Participant 3, one of the users who was least
familiar with the system, made many action specification errors, as would be expected.

Classifying Errors by Stages

Classifying errors by the stage of user activity is much more difficult than just identifying
input and execution errors, as is typically done; the benefit is the greater diagnostic power of the
classified errors. Classification may be difficult because the observable symptoms of errors of
different types can look the same. The classification of the error involves taking into acconmt the
user's past performance at the time the error was made, his future behavior, when the error was
noticed and recovered, as well as his protocols which reflect his mental processes. This analysis
would be difficult to do without the combined protocol and history log files. Action specification
and execute errors can look similar. If, for example, a user selects the "deny" command from
the schedule menu but immediately tries to undo the results of that command and then selects
"approve", which is an adjacent menu command, we would classify the error as an execution
error. It was clear that the user intended to execute the approve option; the user never thought
that deny was the correct action to accomplish the intention. As confirmation, there may have
been a protocol stating that selecting deny was not the intention. If the user selected "deny" by
accident and did not realize it right away, it would be harder to interpret whether or not this was
their intended action. Looking ahead to whether he detects the error later and changes it to an
approve would help confirm it was unintended.

Another case of similar symptoms with different roots would be if a dialog box was opened
which did not accomplish the stated intention but whose command was adjacent to the correct
one. A determination of whether the user thought the opened dialog box was correct would have
to be made to know whether it was an execute error or an action specification error. If the user
had opened the correct dialog box in the past to accomplish that intention, and in this instance
s/he immediately corrected this problem, we would assume an execution error was made. If the
user continued with a wrong sequence of actions, continued to select incorrect options, and had
never performed the correct sequence of events, we would classify the error as an action
specification error. An interesting case occurs when a user has correctly performed a sequence
of actions in the past, and then makes an error of omission. For example, one user when
changing the date/time information in the date dialog box neglected to change the duration. Since

51

he had correctly done so previously, we classified this as an execute error, we felt he knew and
intended the correct sequence of actions but forgot to execute one action. This type of error is
comparable to typing a word with an incorrect spelling. Was the error that the user did not know
the correct spelling and the typing was intentional, or was the correct spelling known but the
word was typed incorrectly? One is an error in spelling while one is an error in typing. If the
word had been spelled correctly previously, you would suspect the manual typing error.

The classifications were performed as follows. Errors in intention, or mistakes, occurred
when the user intended to do something which would not move him closer to the goal. Many of
these involved forgetting or misinterpreting the task instructions. For instance, many users
scheduled requests for a period of only four days, rather than five or incorrectly identified his/her
agency name. The intention error served to alert us that what they were doing was not expected
but we would then evaluate their performance on the remaining stages without penalty (i.e., we
would not classify all their behaviors within the "wrong" tasks as errors). We would, however,
evaluate the success of their endeavor with an incomplete or wrong, depending on the situation.
Errors in intention, therefore, do not reveal much about the USI design, but rather about how
well the users followed and interpreted the task scenario descriptions.

Errors in action specification concern the sequencing and appropriateness of user input
actions for a given intention to execute, and are one of the indicators of articulatory indirectness.
These included instances of the error types: presses action button before filling in the necessary
data, performs button actions out of sequence, does not locate menu item on first try, does not
recall/execute correct sequence of events, mixes up two dialog boxes but recognizes it is wrong
one once opened, wrong concept of button/object functionality, etc. Classifying action
specification errors were fairly straightforward, once the intention to execute information was
known. The analyst also needs to know the correct or acceptable sequence of actions for every
type of execution. Again, this analysis requires detailed information on all user inputs as well as
the intention to execute associated with the inputs which is obtainable from the protocols.

There were only eight wors attributed to perceptual difficulty. These included selecting the
wrong mission icon because the missions were too small with the current schedule scale setting,
not noticing that a dialog box was already open and trying to reopen it, and taking actions which
cause changes to the time bar which go unnoticed. Perceptual errors occur when the contributing
cause of the error appeared to be imperceptible or unnoticed information.

Errors were classified as interpretation errors when the displayed information was judged to
be perceivable but the user did not correctly extract its meaning, or did not correctly judge the
system state. For example, if a mission turned red and the user failed to interpret this as the
denied state, it was an error in interpretation. One major contributor to this error is lack of or
poor system feedback which causes a wrong interpretation of the system state. Note that once an
error is determined to have occurred at a lower state, we do not label as errors the following
states, which may be incorrect due to the earlier error.

52

Finally, errors are classified as errors in evaluation when users think they have accomplished
their intention and they have not, think they have not made progress toward their goal when they
have, or are confused because what did happen was not what they expected. When an error was
made in a different stage and not immediately noticed, we debated whether this should be
considered an error in evaluation as well. We decided instead that our labeling of the success o,
the endeavor (incomplete or wrong if contained an uncorrected error) would reflect the unnoticed
error and did not call it an error in evaluation. The success of the endeavor and the fact that the
error was not immediately recovered from are themselves indicators.

The classification by stages process adds additional information by assessing at which stage
the error occurred, and differentiating errors with similar observable symptoms. It involves
making assessments of the users' mental activities and pinpointing the most likely stage the error
occurred. This is a new concept as user input activities are all that is usually studied. Applying
the classifications consistently can be difficult but it gets easier with practice.

System Design Implications Based on Error Analysis

Error frequencies are shown in table 9 below. As we have noted with the other high-level
summary measures, knowing just the error total alone, e.g., 317, would not provide much
diagnostic information.

Table 9. Frequency of Errors by Stage of User Activity.

Participant #
Errors in: 1 2 3 4 5 Total
Intention 9 10 5 5 0 29
Action specification 20 13 48 35 1 117
Execute/repositions 31 29 19 36 9 124
Perception 1 1 4 2 0 8
Interpretation 6 6 4 3 0 19
Evaluation 7 2 4 6 1 20
Totals 74 60 84 88 11 317

There were quite a few errors caused by the current USI design where improvements should
be considered. For example, users had difficulty in locating the find and edit commands on the
menus. There were multiple errors in action specification on the folder task. The date and the
layout dialog boxes were often confused. The button labeled "change screen" appears to be
ambiguous, resulting in a variety of errors. There were a large variety of execution errors, each
of which should be assessed for improvements.

53

There were relatively few, only eight, perceptual errors. The other indicator of perceptual
activity, however, the frequencies of actions taken to improve perceptibility, was quite high.
There were 37 instances of participants moving the time bar to improve perceptibility of the
display, and 42 instances of setting the screen to improve perception. This indicates there were
many occasions when users' could not see information well on the display. Additional user aids
to help improve screen perceptibility should be considered. These could include a zoom
function, indicators when there are overlapping missions, adding the mission name to the
documentation line and possibly a warning when the screen schedule period is set to be so long
that mission perception will be impossible.

There were interpretation errors in interpreting the schedule period displayed and the time
bar. Finally, for the evaluation errors, there were many cases of users thinking all the missions
were scheduled when they were not. A "number of unscheduled missions" indicator would help
this. As noted previously, errors in intention are not really indicative of USI design problems,
but rather of human performance problems. This system supports an ill-defined creation task to
create an acceptable schedule. The information displayed was not very complex and there were
not a lot of information codes and very few icons. Other systems which support tasks involving
interpretation of complex graphical images may result in many more errors on the evaluation side
of the activity cycle than did this particular application.

In general, all errors should be evaluated and used in conjunction with the other indicators to
determine if a USI change is warranted.

3.7 SUMMARY

The application of the encoding scheme to the collected usability data was very useful in
assessing the directness of the engagements of the user-system interface. The data was in a form
appropriate for the analysis of user engagements, allowing us to assess the interactive nature of
HC. We felt that much more information was available on the HCI process when protocols
were combined with history files and encoded than if we had used any one technique alone. The
combination of real users' actual task intentions with detailed information such as number of
actions to perform each engagement and types of error per intention to execute allows us to
measure the directness of those engagements. We were able to clearly demonstrate that
traditional high-level performance measures such as task time, task completion, and error
frequencies alone are inadequate for diagnosing USI improvements. With the new encoding
technique, indicators of inefficient engagements are readily apparent. Patterns in the data which
occur at different levels provide information on different types of system design problems. The
user interface expert's data shows basic system design problems; however, the interface expert
may not have realistic task goals and strategies. The actual users' data indicates how direct real
users with real intentions find the system to use, as well as revealing much information on users'
experience levels and individual interaction problems. Finally, the data is in a form amenable to
quantitative analysis, removing much of the ambiguity which results from methods such as
observation only. This was only the first step, however, and much remains to be done to
improve this methodology and make it more efficient.

54

SECTION 4

FUTURE WORK AND CONCLUSIONS

The results obtained to date on measures of user-system interface effectiveness are very
promising. We have, for the first time, a method which allows us to obtain measures on the
directness of user engagements with a system. We have successfully integrated protocol data
with history file data, for a complete and useful picture of HCI activity. We have created a
theory-based encoding scheme which provides a method for quantitative analysis of the data.
We have created an error classification scheme based on the stages of user activity model, which
provides information on which stage in the human information processing cycle an error
occurred and how to fix the system to prevent it than is possible to obtain from traditional error
frequency measures. Indicators of USI effectiveness extending beyond errors and time have
been proposed and found to be useful. We have successfully shown that a USI engagement can
be error-free but not be direct, and new measures and indicators such as those proposed here are
required for a complete evaluation. The measures are also in a form which allows for easy
comparison across subjects. We have the ability to determine whether difficulties are due to a
single user's inexperience or whether problems can be attributed to the system design.

We still have, however, many more areas to explore both in terms of the measures and
indicators, and in the process for integrating the data and applying the encoding scheme.

4.1 MEASURES AND INDICATORS

We need to do several things in the area of refining the USI measures and indicators. First,
we need more rigorous definitions of the different levels of the encodings; when is something a
task intention as compared to an intention to execute? While we tried to be consistent in our
application of these terms, it was difficult, particularly as this was the first time we applied the
scheme. The same problem holds with regard to the level of detail for the intentions to execute.
Sometimes all actions within a dialog box were considered to be a single intention to execute,
and sometimes particular actions were broken out separately. This may need to be flexible based
on the USI areas of interest.

We would like to continue to work on the definitions and names for the different USI
indicators. These concepts are appealing because they provide a taxonomy that different
usability specialists could use to discuss similar kinds of problems across systems. Rather than
being forced to work with specific system problems, problems can be generically classified and
eventually mapped to known solutions. With an ability to define a method and measures, we can
specify a method for contactors to conduct usability studies.

55

There seem to be many kinds of repetitions which are indicators of different types and levels
of problems. We would like to classify all of these various kinds of repetitions and determine
what they imply for the system design.

Finally, we need to apply the encoding scheme to a different system to ensure it is generic
across systems, and continue to refine it.

4.2 EXPLORING OTHER ANALYSIS ROUTINES AND THEIR
EFFECTIVENESS

We need to continue investigating other analysis routines and their usefulness. SHAPA, for
instance, has some built in routines for calculating frequencies, matrix analyses, lag sequential
analyses, and frequency of cycles. The frequency routines were useful because the most
frequently used commands could be identified. This aids in assessing how many actions are too
many. For instance, the edit/view dialog box had frequencies ranging from 24 to 80 across
participants. We would expect this box to be easily accessible via short cuts. It just so happens
that it is; users can double click on a mission icon to bring up the corresponding edit dialog box
for that mission.

The problem with the routines such as frequency of cycles was illustrated earlier. The
routines only work on the predicates. The patterns, therefore, are of very high-level repetitions.
For instance, Int.exec -> Menu -> Command -> Button -> Evaluate ->, is useful in that you see
a dialog box is being opened and immediately closed with no actions taking place inside it, but
you do not know if it was the same dialog box being opened repeatedly. On the other hand, a
sequence List-select -> Button -> List-select -> Button -> List-select -> Button, would be
interesting because it suggests an inability to apply a single action to many selected items in a list.
If we took it to a lower level it would not show up as a pattern because each selected item in the
list would be different. A more sophisticated pattern recognizer which allows wildcards is
required. Identifying the different types of repetitions that could occur would allow us to select
the techniques which best identify the various types. We briefly looked at another tool called the
Maximal Repeating Pattern analysis tool (Siochi, 1991) but that too found repetitions only at one
level.

4.3 A TOOL FOR AIDING THE APPLICATION OF THE METHODOLOGY

One apparent drawback to this method is the number of steps and time required for data
transformation and integration, as well as the manual extraction of indicators and numbers of
actions, steps, and task intentions. The most tedious tasks were transcribing and typing verbal
protocols, reviewing the video tapes multiple times, preparing files for SHAPA, and entering
data into SHAPA.

56

SHAPA also had many limitations which caused unnecessary work. One limitation of
SHAPA was the size of data files it would accept. SHAPA designers claimed files up to 64K
were acceptable but we experienced difficulty with files over 15K in size. On average, each
participant's data file in our study was about 150K; therefore each data file had to be split into
separate files. The splitting of data files also required manual collation of each separate file's
generated reports in the analysis stage. While using SHAPA other inconveniences were
encountered. Once a file has started to be encoded, the protocol file cannot be edited. SHAPA
does allow splitting and combining of lines. In order to insert a line, the line must actually be
split so that at least one letter is left on both lines. SHAPA does not have any copy, cut or paste
feature which would be helpful. The reports also have limitations. Frequency of cycles only
runs between one predicate. Tracking the cycle between two predicates would provide useful
information. The value lists do not provide correlation between entities within a predicate (those
separated by a coma), which is a huge drawback of this software. One other quirk of the
software is that upon completion of encoding a file, the file must be closed and then reopened to
run accurate reports.

Due to all of the limitations of SHAPA, which was not ever intended to support this
particular method, we plan to specify requirements for a tool which will be dedicated to
performing this method. The tool will be multi-media in nature and will aid in integrating the
history file and the users' intentions. We may be able to remove the step of transcribing all of
the users' protocols and just extracting the information needed for the intentions, evaluations,
etc. Also, with a good tool, we may be able to do some encoding real-time while observing
subjects. All of these areas will be looked at in the coming year.

4.4 ASSESSING THE EFFECTIVENESS OF PERCEPTUAL ACTIVITIES

Two of the stages of user activity could not be assessed as completely as we would have
liked using the described methods of data collection. To understand the perceptual processing
and interpretation of the display output we basically relied on errors in these stages and the
frequency of input actions to aid in improving processing in these areas. We really were not
directly measuring perception as could be done by identifying the number of displayed data items
visually processed, or other measures of perception. Display output is becoming more graphical
in nature and work to evaluate graphics and imagery to assess its effectiveness needs to be
performed. This may involve different types of data collection devices such as eye-trackers.

57

4.S CONCLUSIONS

This research has provided us with a much better understanding of what is required to do a
complete user-system interface evaluation. We now have a theory-based framework within
which concepts such as semantic and articulatory distance can be measured, and we have created
operational, working definitions and indicators for these concepts. We were successful in
integrating protocol and history data for a complete description of HCI activity. We created a
generic encoding scheme for abstraction of data. We validated the methodology by applying it to
a real prototype. We are now one step closer to being able to measure the usability of a system
in a quantifiable terms.

Much remains to be done however. The current process for applying this methodology is
time-consuming and tools need to be developed to support the process. We need to apply the
method to another system to confirm the measures and we need to continue to refine the
indicators as well. These are the goals for this project as it continues through FY93.

58

SECTION S

REFERENCES

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, N. J.: Lawrence Erlbaum Associates, Inc.

Holleran, P. A. (1991). A Methodological Note on the Pitfalls in Usability Testing. Behaviour
& IW'ormation Technology, 10, 5, 345-357.

Hutchins, E. L., Hollan, J. D., and Norman, D. A. (1986). Direct Manipulation Interfaces. In
D. A. Norman and S. W. Draper (eds.) User Centered System Design: New Perspectives on
Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Landauer, T. K. (1987). Relations between Cognitive Psychology and Computer System
Design. In J. Carroll (Ed) Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction. Cambridge, MA: The MNT Press.

Lewis, C., Poison, P., Wharton, C., & Rieman, J. (1990). Testing a Walkthrough
Methodology for Theory-Based Design of Walk-Up-and-Use Interfaces, CHI '90
Proceedings, 235-242.

Norman, D. A. (1986). Cognitive Engineering. In D. A. Norman and S. W. Draper (eds.) User
Centered System Design: New Perspectives on Human-Computer Interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Prasse, M. J. (1990). The Video Analysis Method: An Integrated Approach to Usability
Assessment. Proceedings of the Human Factors Society 34th Annual Meeting, 400-404.

Sanderson, P. M., James, J. M., and Seidler, K. S. (1989), SHAPA: An Interactive Software
Environment for Protocol Analysis. Ergonomics, 32 (11), 1271-1302.

Siochi, A. C. and Hix, D. (1991). A Study of Computer-Supported User Interface Evaluation
Using Maximal Repeating Pattern Analysis, Proceedings of CHI'91, 301-305.

Tullis, T. S. (1983). The Formatting of Alphanumeric Displays: A Review and Analysis.
Human Factors, 25(6), 657-682.

Virzi, R. A. (1992). Refining the Test Phase of Usability Evaluation: How Many Subjects is
Enough. Human Factors, 34, 457-468.

59

Whiteside, J., Bennett, J., Holtzblatt, D. (1988). Usability Engineering: Our Experience and
Evolution. In M. Helander (ed.) Handbook ofHuman-Computer Interaction, N. Holland,
Amstedam: Elsevier Science Publishers.

Ziegler, J. E. and Fahnrich, K. P. (1988). Direct Manipulation. In M. Helander (ed) Handbook
of Human-Computer Interaction, N. Holland, Amsterdam: Elsevier Science Publishers.

60

APPENDIX A

TASK SCENARIO

For the following scenario you will be acting as a scheduler for the Phoenix Agency. The
Phoenix Agency has a number of Special User Airspaces (SUAs) for which you will be
responsible. These SUAs are: Canyon Run, Yankee 1, Yankee 2, India, W-556A, W556B,
W556C, R-7221, R-7222 and R-7223 which is subdivided into R-7223N, R-7223S, R-
7223E, and R-7223W. All of your airspaces are active or available for missions to be
scheduled into them Monday through Friday from 0600 EST (1100 Z) to 1800 EST (2300 Z)
except for India which is available 24 hours per day.

You have access to viewing and requesting SUAs in other agencies but you do not have
authorization to schedule those airspaces.

1) You are planning a schedule for the week of 13-17 April 1992. All of the work done at
Phoenix agency is done on EST. Set the screen start date and time appropriately.

2) Look at the requests for the airspaces you control, deny, or edit them as you deem
appropriate. You cannot accept any conflicts.

3) Since you will be entering a number of missions that involve the same airspaces, create a
folder named FIGHTWING that contains the following airspaces: Canyon Run, Yankee
1, Yankee 2, and India.

4) Create another folder named BOMBTEST that contains the following airspaces: R-7221,
R-7222, and all the airspaces in R-7223.

5) Remove India from folder NIGHTRUN.

6) The attached requests have arrived by fax. Input them into the MAMS system as
approved missions. If possible resolve any conflicts. You may do this by changing the
start time of a mission, denying the mission, or changing the airspace if necessary. You
may not accept any conflicts.

7) A squadron that does not have access to the MAMS system has asked you to check on
their request called ASR on the 13 April 92 for W-555 in Neptune NAS. Has the request
been scheduled, looked at (or not looked at), or denied? They also want to know about
missions with the following MAMS numbers: 1230000 in R-8722W and 1280000 in W-
554. Write the status of the mission on the back of this paper and set the paper aside to
be faxed to the squadron.

61

8) Since ASR has been denied, the squadron has asked you to change the time of the
request to 13 April 92 1300 EST.

9) You have been asked to change Bravo77 to a start time of 0900Z. Bravo77 has been
scheduled daily over the next week in R-7223.

10) Print the following reports:
"* All missions for R-7222 and Canyon Run for the week of 13-17 April 1992.
"• All missions requested by Phoenix for the week of 13 April 1992.
"* Print Raider54 scheduled for 17 April 1992.

62

APPENDIX B

SEMANTIC AND ARTICULATORY LEVEL ENCODINGS

Semantic Encodinga

GOAL
GOAL (Goal # - Name)

Goal # : Corresponds to scenario number
Name: Brief description

Possible encodings:
1 - setdate
2 - schedulemissions
3- fightwing
4- bombtest
5 - nightrun
6- newmissions
7 - status
8- timeasr
9 - timebravo

10 - print

INTENTION OF TASK
INT.TASK (Goal # - Task # - Name)

Goal#: 1- 10
Task#: 1-..
Name: Subject to the users understanding of the software

INTENTION TO EXECUTE
INT.EXEC (Goal #- Task #. Exec # - Name)

Goal#: 1-10
Task#: 1-..
Exec#: 1-oo
Name: Subject to the users understanding of the software

INTENTION EXTRA
INT.EXT (Goal # - Ext # - Name)

Goal#: 1-10
Ext#: 1 - .
Name: Subject to the users understanding of the software

63

INTENTION PERCEPTION
INT.PERCEPT (Goal # - Percept # - Name)

Goal#: 1 - 10
Percept#: 1-..
Name: Subject to the users understanding of the software

ERROR IN INTENTION
ERR.INT (Error # * Goal # - Task #. <Exec #> - Name - Problem)

Evor # : 1 --
Goal#: 1-10
Task#: 1-00
Exec #: 1-00
Name: Subject to the users understanding of the software
Problem: What the error is

ERROR IN ACTION SPECIFICATION
ERR.ACSP (Error # * Goal # - Task #. Exec # - Name - Problem)

Ermrr#: I --
Goal#: 1-10
Task#: 1-oo
Exec #: 1-00
Name: Subject to the users understanding of the software
Problem: What the error is

ERROR IN EXECUTE
ERR.EXEC (Error # * Goal # - Task #. Exec # - Name - Problem)

Error#: 1 -00
Goal#: 1-10
Task#: 1-00
Exec #: 1-00
Name: Subject to the users understanding of the software
Problem: What the error is

ERROR IN PERCEPTION
ERR.PER (Error # * Goal # - <Task #>. <Exec #> - Name - Problem)

Enrxr#: I --
Goal#: 1-10
Task#: 1-00
Exec #: 1-00
Name: Subject to the users understanding of the software
Problem: What the error is

ERROR IN INTERPRETATION
ERR.INTER (Error # * Goal # - <Task #>. <Exec #> - Name - Problem)

64

Error#: 1 -0
Goal#: 1-10
Task#: 1-..
Exec #: 1-00
Name: Subject to the users understanding of the software
Problem: What the error is

ERROR IN EVALUATION
ERR.EVAL (Error # * Goal # - <Task #>. <Exec #> - Name - Problem)

Error#: 1 -.
Goal#: 1-10
Task #: 1-0o
Exec #: 1-o0
Name: Subject to the users understanding of the software
Problem: What the error is

EVALUATION
EVALUATE (Goal # - <Task #>. <Exec #> - Name - State)

Goal #: Corresponds to the goal being evaluated
Task #: Corresponds to the task being evaluated
Exec #: Corresponds to the execute being evaluated
Name: Corresponds to the name being evaluated
State: Abort - Abandons corresponding goal, task, or execute

Inc - Has not fully completed corresponding goal, task, or execute
Ok - Proper completion corresponding goal, task, or execute
Wrong - Has completed corresponding goal, task, or execute incorrectly

RECOVERY OF AN ERROR
REC.ERR (Error #)

Error#: 1-oo

Anytime an error has been acknowledged and recovered, it is noted as a recovery of an
error. If the experimentor verbally helped with the recovery of an error it is noted as
REC.ERR(Error # - help). If the experimentor actually pressed the keys to help the user get
out of a bind, it is noted as REC.ERR(chip typing start) and REC.ERR(chip typing stop) and
the user does not get credit for recovery.

MISCELLANEOUS
Q (Miscellaneous)

Anything out of the ordinary. For example, a crash would be noted as Q(CRASH).

65

Articulatorv EncodinMs

MENU
MENU (Name, Function)

Name: Menu name
Function : dc = double click

k = key
m = mouse

Possible Menu Names:
File
Folder-hier
Mission
Schedule
View

COMMAND
COMMAND (Name, Function)

Name: Command name
Function : dc = double click

k = key
m = mouse

Possible command names within each menu name:

File (admin, admin-fold, print)
Mission (create, edit, find)
Schedule (approve, deny, describeconf, pendreq, unschedule,)
View (date, layout)

Abbreviations : Admin - administrative, Describeconf - describe conflicts, fold - folder,
Pendreq - pending requests,

LIST SELECTION
LISTSELECT (Name)

Name: Name of selection box

Possible list select names:

Create
Describeconf
Edit
Find
Folder- 1

66

Folder - r
Layout - undis
Layout - dis
Print
Pendreq

Abbreviations : Folder - 1 - available suas (left box), Folder - r - folder suas (right box),
Layout - undis - undisplayed suas, Layout - dis - displayed suas

FIELDS
FIELD (Dialog Box - Name - <Function>)

Dialog Box: Same as command name except admin-fold is folder
Name : Field name
Function: data - entered into a blank field

del - deleted information in field
edit - entered into already occupied field or an empty field and

editing took place while typing
<No function> - field selected

Possible field names within each dialog box:

Date (date, time, durdays, durhrs)
Create, Edit (name, type, prior, ord, unit, call, #air, airtype, sua, stdate, sttime,
spdate, sptime, dur, lowalt, upalt, poc, phone, comment, label)
Find (stdate, sttime,spdate, sptime, sua, reqagency, mamns#, name)
Folder (typein, search)
Layout (search)
Pendreq (stdate, sttime,spdate, sptime, sua, reqagency)
Print (stdate, sttime,spdate, sptime, name, sua, reqagency, util)

Abbreviations: alt - altitude, call - callsign, comment - remarks, dur - duration, durhrs -
duration in hours, durdays - duration in days, name - mission name, poc - person on call,
prior - priority, ord - ordnance, time stdate - startdate, sttime - starttime, spdate - stopdate,
sptime - stoptime, type - mission type, typein - creating or finding a mission field, util -
utilization, #air - # aircrafts

BUTTON
BUITON (Dialog Box - Name - <Function>)

Dialog Box : Same as command name except admin-fold is folder
Name: Button name
Function: dc - double click

<No Function> - button selected

67

Possible button names within each dialog box :

Create (create, createcon-ok, createcon-cancel, cancel, ins, del)
Date (ok, cancel)
Describeconf (cancel)
Edit (edit, editcon-ok, editcon-cancel, cancel, ins, del)
Find (find, view, change, cancel, reqonly, approveonly, both)
Folder (add, rem, openfolder, create, close)
Layout (add, rem, openfolder, ok)
Pendreq (find, view, change, cancel)
Print (view, print, cancel)

Abbreviations : con - confirmation box, del - delete, ins - insert, rem - remove, reqonly -
request only

SCROLL BARS
SCROLL (List select in Dialog Box)

Dialog Box : Same as command name except admin-fold is folder

Possible scrolls:

Create
Describeconf
Edit
Find
Folder
Layout
Pendreq
Print

FORMS
FORM (Name)

Name: Form name

Anytime a user hits the background ot the interface, either by mistake, missing a button
or menu or misunderstanding some functional capability.

Possible form names:

Create
Date
Datebox
Describeconf
Edit

68

Find
Folder
Layout
Main
Pendreq
Print

TIMEBAR
TIVMEAR (Durationr/Code)

Duration: The time between keypress and key release. The duration may be due
to users decision making or system reponse time.

Code: p - manipulation of timebar related to perception
s - manipulation related to scheduling

MISSIONS
TAPE (Name - Day of week -Ti/Code)

Name: Mission name
Day of week: Original requested date of mission (m, t, w, h, f)
Tine: The time between key press and key release
Code: p - moving a mission to improve perception

s - moving a mission to schedule
r - reposition of mission due to mission slippage

MISCELLANEOUS
Q (Miscellaneous)

Anything that does not apply to the above criteria. An example is pressing a key and
no computer response, i.e., Q(no computer response). Another is a crash, noted as Q(crash-
recovery-start) and Q(crash-recovery-end-<evalutaion>).

69

.2 tQu E iaoL

-T - - cCe

0~~~~0 4)r'r -o

E ij E) i
32E

46 co-i E 0.0 .00.

g L? EP
(ULa

> -e

o i-

4x x

(0 -u90 U

c 4R G!

IL a .271

x a, .

al- 1 32

0 0 0 0 0 0

,EE

Ii *1 lil!E

iZ72

C- CX

E9 gN.Ec r 0

0 1010 000

le le N NN

00 000000 0072

0 IM 5 aFT)0

00 15 -- 0

.2 I V .2

ti2
0 0 0

To 1 1%o o o o c•o

21' t(n

-
v

.0 0

ow0

Vi 0 V

0 0 U 0 00 0 0

oi i o000w 0 0 0000 000 00

E 8,

ODC

73

w~5 0)l' a)

a6 _ * 0e

i~

0 00 0 0 0

0000

V cm 0' WO Wil i ,V- ,T- 0' ,,- ,V= ,T- cm W0IN &D

cm)

74

0@o a~*c

C ~ 2 a- t)t

in~~ ~ c-0o gM

o E -6 o po 0

00 s 0 0 00 00 0_0"o___0_

C togi & =cv;-
ýsj-- a E A w 2

j2 U. g wf r

0 L
V- =. yN
WH 0 w

0 0 L 0 75

gig 3j

La,

wC 0 0 0 0 0 0 0 0 0 0

WN0:)000 00 0000 00 0000000000000000

* y -cmJ% 001'V c O)V Voi' c C Y Y " -"V01v- "Coac' ICV Ic'CJ -1

V- V- V- V- V- T-0 -V- V-1 I ~

0109

9I 9 x YmC

CI 76 j

G-so

tin

0 00 00 0 00 0

00 000000000000000 0

cm o CMV-IL V-cmmie -I V - NV- ~-N

V- 9- T- V- Y" 'I- Yv- - Y-

77

32~c S02: 't

jo 0

U88 14.15 s :92-0wsg

S~0

1J00600 0 0

II _ ____ ____ ___ ____ ____ ___

LL ~y ~

8L re-I

78

.00100

Co0 10

(0 E. > 0

- cc 0 T 20

0 0

oa a 0

10 V

o0

w wi a, CW oa6i u C

-0 0 G

Ibloo -lio 3:3 w I00o 00000000 00

U. Nii V- V_ 0F 4v N -- v- V" VC I '~I-,V

%LI Z2

0 (D 0 C

I 0

79

g cc

_e EIL to

:2 cm C% Cto8 Zz

(A .RC lol 0.

x~ 8

00 00 All 0

0__000 00 00 00001000000

ODt P

ri, z rU

c" > >__ >_>

re

ii CM

80

E ME

M~ 0
to .ý; e

'8 c 0 -I M14) a

.2 C00m

to E~~ ~-o 0

-CL

EC e

0

000W. O0w.0 00

U)

.2 v

t00
cc 00

CD00

.~ co
x4 -~

~~0~ __ __

81 (

9- cc

E .- 0 W.0

0 . Co

0a E N
wc~ 18 ______

00W0000 00

w;00 00, I000000 00

COX IA

U. U.
-9 -9J~

00o

12 it
is S 00 (

!> >

82

C-
a, U2

0 4) 0
is §5

-x TE .2.

wt00000 0 wS0010 00 0:g

ogo

x x

* C

W) 0

g1 lii ii
I-.~

FIRC V,. i

r: x 23

APPENDIX D

Error Summary

This appendix contains information on errors user's made during the usability testing,
classified by stage. Each user was assigned a unique letter code, and each error an error
number.

Errors in Intention

Instance Sub /error # Freq
Misinterprets tas 4 days scheduled T-1, N-5,34 3
description

Remove W areas T-2 1
Prints Neptune T-46 1
Prints r7222 for 2 T-43 1
wks
Reading wrong L-3,4,5 3
part of task
Not in EST K-5, N-3 2
Wrong folder K-27 1

Dialog box Folder and layout L,37 I
purpose

Memory Wrong mission T-37
name
Wrong scheduling T-38, K-57 2
week (14-18 Apr)
Thinks agency is T-35, 39, 42; K- 4
Neptune 59
Narrows search N-7, K-8,11 3
Wrong dates N-63 1
searching for
1280000
Moved too T-36, K- 13,72
early/wrong time
frame
Thought entered K-38
wrong times
Thinks Phoenix is L-79
an SUA

85

Errors in Action Specification

_E Instance SUN/error # Freq
Presses action Creating pam, hits N-81 I
button before button before
filling in necessary entering data.
data Doesn't enter info N16 1

before find button
Hits button open N-55 1
folder before
entering info
Select view N-8 1
without info. in
field

Forgets a button in In pendreq, tries to N-62,64 2
correct button view before find
sequence In find, hits view N-75 1

before find
Forgets edit button T- 10,L-15,17, 7
and closes 19,21, N- 19,21

Prints before T-48, L-78 2
viewing in Print
Forgets create L-7, N-51, 54, 4
button 56
Needs to reselect L-27 I
find button to
reflect changes

Can't locate menu Looks for pendreq
item (command) - under schedule T-6 1

- under file admin N-6; 1

Find L-8,25,74, 5
K58,N15;

Edit L-13,65 7
N-18,20,30,78,
K58;

Layout L-36 I
Approve L53, N12 2
Admin-folder L-77, N47 2
Date N-1,2,35 3
Create N-70 I
Deny K55 1

86

Can not In create, need N-71
recall/execute ASR selected to
correct sequence of find MAMS#
events to Forgets how to L-73 1
accomplish identify mission in
intention conflict with.

Changing layout N-41,44,49 3
instead of creating
folder.
Doesn't know how N-59 I
to get rid of blank
screen
Opened folders on T-18,19, K-28 3
the left side to
create
Opened folders on T-20, K-30 2
left to remove an
airspace
Can not find N1O 1
location of
requested missions
Thinks move K25 I
through schedule
with a menu item
(vs. timebar)
Does not N67 1
remember how to
check on ASR

Mixes up dialog Date vs layout T-12,.-4,N- 3
boxes (realizes Layout/find K-24 1
when it's open its Pendreq rather T-59 1
the wrong one) than find

Create rather than L-14, N-57,73 3
edit
Change layout for N-39,43,48 3
folders
Create req. rather N50 1
than folders
Print rather than N60 1
check ASR one?
Layout vs view K-49 1

87

Wrong concept of Change screen vs. T-15 1
button/object view
functionality Uses time bar to N-11 1

try to get missions
on schedule
Thought cancel K-39 1
canceled mission
rather the Dbox
Thought change K-51 1
screen clears
screen
Thought change N-17 1
layout improves
perception
In find db, hits K10,12 2
change screen
rather than find
button

Types in letter of Six instances in T-34,41, K-67, 6
unacceptable case Find Dbox 62,7, L-1O

In Print preview L-81, K-64 2
In create K-45 1

And/or Print Neptune T-45 I
functionality Print r54 T-47 1
confusion Settime-and/or dur K-71 1

for days and hrs.
Not clear if need to
fill in both.

Tried dragging an Proper airspaces L-2
item vs using
button for action
Wants to do but Wants to edit T-9,12
can't from current while in the view
location form

88

Correct object not Wants to edit L-16,28 2
selected as Brave-T but still M
recipient of Wants W, still M L-18 1
command/changes Wants H, still M L-20 1

Item viewed is not L-30 1
same as item
selected for editing
Add button L-38 I
selected before any
SUAs in list
selected
Open folder button L-39 1
selected before any
folders in list
selected
Approves without L-54,55, N-13 3
selecting mission
Airspaces - button N40 1
before list select

Can not specify Enter info thunder L-35 I
correctly due to - no folder so SUA

ous error field em ties out
aging info in Cangedftotal L; 1

wrong field for duration, not day
intention duration

Changed stop, not K-54 1
start

Enters incorrect Enters a 6 vs 7 N-72
info. into field digit #

Wrong alt. format C-6 1
Looks for info in Info was in doc. 1
wrong place line, but looked in

edit dbox
Forgets how to use N-53 1
hierarchical menus
Incorrect Ctrl S for approval K-6 1
command by-pass
key

Errors in Execution

Type Instance Subjierror # F
Dos not delete al N-65,68,69 3

info. in a field
Entered data in C-5
wrong field

89

Wrong mission C-2
Trouble double T-35,8 3
clicking
Troubl deleting T-50,51

field info
Added wrong T-17 1aisace
Typo tots:

K-24
T-16
N-7
L-13
C-5

Failed to execute a Forgot to set mos. K-3,4 4
step which we felt Forgot duration L-82
they meant to do Forgot print button C-7
but forgot Forgot to change

one time field
Menu typo/select K-4, 23, 52 16
wrong command T-7
(Select wrong N-7,58
command or select L-2,56,57,5960,
same menu twice) 61,62,64,67,75

Meant to double K-15,56 9
click but moved T-5,9,14
mission/or meant L-63,70,71,72
to select mission
and double clicked
Time bar problems It snapped back T-11 2

Wanted to stretch L-68
it and it slid.

Inadvertantly freq, tot # steps)
moved missions T-3, (9)
which involved N-2, (10)
repositioning L-5, (18)
executes C- 1, (9)

Errors in Perception

Type Instance Sub/error # Freg
missions too close, Many ,26, -6
overlapping 27,28

K-33

90

Dialog box already L-6 I
open

Doesn't notice Tune bar got L-50 1
changes in timebar bigger but it was

not perceived,

Errors in Interpretation

Type Instance Sub Verror # Freq
ates (schedue Zulu time vs. EST T-T

time period) not What is last day to K-73 I
clear, difficult to schedule
interpret Interprets schedule L-69

as being for 22
rather than 24
hours

Lack of feedback Folders T-56, K-74, 3
L-29

Find DB T-57,58 2
List select hard to Sorting Bravos K-61
distinguish
between missions
Poor field label - Label in create T-49
function unclear form purpose - not

realized changed
name

Wrong input Wrong date in find T-40
form (doesn't knowit)

Memory Forgot closed K-34
create mission
screen

Screen format Removing airspace N-42,45 2
change unnoticed layout and thought

they were creatinga folder

Scroll not greyed Thought scroll bar N-
out was active
Misinterpreted Conflict state, K-14, 2
mission icon color
meaning Denied state L-76
Misinterpret time Already at N-14
bar beginning of week

End of week K-22

91

Errors in Evaluation

Type Instance Subj/error # Freq
System delay Scheduling T-38, N-23, 6

K-17,19,20,21
Thinks all missions Missions small C-F

scheduled
Only monday L-58 2
scheduled

Scheduled mission N-32 I
out of time range
Wrong start time Info. from L-34,40,41

previous mission
remained in fields

Thinks there No conflicts L-52
should be conflicts because did not

approve any
missions

Aborts file menu N-38
for layout but
wants folders
Lack of feedback Changing airspace N-46

not making a
folder

Misevaluate Leaves date to set- K-1 2
whether moving airspaces first
closer toward goal

Thinks items in a K-69
folder can not be
found

Memory Aborts proper K-29 I
folder and edits
another folder

Doesn't notice an Denied instead of L-66
execute error approved, mission

turned wrong color
but didn't notice
and thought was
approved

92

